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CHAPTER 1. GENERAL INTRODUCTION 

1.1 INTRODUCTION 

The work presented in this dissertation was developed in response to calls from the 

cellulosic bioenergy research community requesting a comprehensive and robust decision 

support framework for guiding the sustainable removal of agricultural residues for bioenergy 

production. These calls came from across the bioenergy community including the US 

Department of Agriculture (USDA), the US Department of Energy (DOE), academia, and 

industry. The challenge is clear; commercial scale removal of agricultural residues is 

currently being implemented to supply biomass feedstock for multiple first–of–a-kind 

cellulosic biorefineries, but the tools required to ensure sustainable decisions were being 

made had not yet emerged. Wilhelm et al., 2010 presented a multi-institution perspective on 

the requirements for this decision support framework. These requirements include 

1. The ability to evaluate multiple environmental factors that can potentially limit 

sustainable agricultural residue removal rates 

2. Providing cellulosic biorefinery industry decision makers with the data and 

knowledge required to confidently make investments. This includes reliable resource 

estimates, perspective on sensitivity, and confidence in USDA conservation 

management planning certification for their contracted growers. 

3. Providing biomass producers with the decision tools they need to sustainably manage 

their production operations. This includes a detailed understanding of what is going 

on within single management units and again includes certification through USDA’s 

conservation management planning process. 
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The work presented in this dissertation represents the development of an integrated 

decision support framework which satisfies these requirements. 

1.2 AGRICULTURAL RESIDUES AS BIOENERGY FEEDSTOCK 

The DOE released a study in 2005 that identified scenarios with over 270 million metric 

tons of agricultural residue biomass (i.e., materials other than grain including stems, leaves, 

and chaff) available annually in the US (Perlack et al., 2005). Assuming a biomass to biofuel 

conversion rate of 330 liters per metric (Aden et al., 2002, Phillips et al., 2011), this resource 

base could produce over 89 billion liters of biofuels annually. Federal legislation through the 

Energy Independence and Security Act of 2007 calls for US biofuel production to increase 

above 136 billion liters annually by 2022. If this federal requirement is met, agricultural 

residues will play an essential role.  

The challenge is that agricultural residue removal must be managed carefully to be 

sustainable. Residues play a number of critical roles within the agronomic system that must 

be considered when removal decisions are made (Karlen et al., 2003; Johnson et al., 2006; 

and Wilhelm et al., 2007). Specifically, there are six environmental factors that can limit 

sustainable agricultural residue removal—soil organic carbon, wind and water erosion, plant 

nutrient balances, soil water and temperature dynamics, soil compaction, and off-site 

environmental impacts (Wilhelm et al., 2010). There is a well-developed set of modeling, 

simulation, and database tools available to support investigation of these factors. The 

challenge is that these tools are disparate and focused on a specific environmental process for 

which they were developed. The question of sustainable agricultural residue removal requires 

the integration of these disparate tools to more comprehensively support decisions. 
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This work has built and implemented a model and data integration strategy to achieve 

the previously stated requirements for a sustainable agricultural residue removal decision 

support framework. The model and data integration strategy has been built on the following 

premises: 

1. Models are required to support sustainable residue removal decisions because 

experimental approaches cannot feasibly describe the full range of system 

characteristics that must be explored. 

2. The use of well-developed and validated models and databases provides significant 

advantages in terms of quickly achieving results that can provide confidence in 

residue removal decisions. 

3. Capable tools supporting model and data integration for complex decision making 

have emerged within the engineering community and can be applied to the residue 

removal problem. 

For executing the model and data integration strategy the first step was identifying the 

model and database tools that provide a sufficiently comprehensive analysis of the scenarios 

and also satisfy the decision making requirements stated above. With the appropriate 

modeling and database tools identified, the study was executed to deliver a product satisfying 

these requirements. The product of this work is an integrated residue removal analysis tool 

that is currently being used to support residue removal decisions and assessments for DOE, 

USDA Agricultural Research Service, USDA Farm Service Agency, USDA Natural 

Resources Conservation Service (NRCS), and multiple industry partners who harvest 

residues at a commercial scale.  
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1.3 DISSERTATION ORGANIZATION 

This dissertation is comprised of four research papers included as Chapters 2 through 5. 

These papers are currently in the peer review process at several peer-reviewed journals. 

Chapter Two presents the development of the integrated multi-factor modeling strategy. It 

focuses on addressing the first requirement by selecting key models and databases and then 

computationally coupling the selected tools to support dynamic multi-factor assessments. 

Chapter 2 includes a review of existing model integration frameworks for engineering and 

environmental modeling applications and discusses the strengths and weaknesses of these 

frameworks for sustainable residue harvest. A detailed presentation of the management and 

distribution of data through the framework is provided. The integrated modeling and data 

flow through the decision framework is presented and then demonstrated with a case study 

evaluating residue removal potential in the state of Iowa. 

Chapter 3 presents an application of the integrated modeling strategy to determine the 

sustainable agricultural residue that is available across the US. This analysis was performed 

to provide a more robust and comprehensive alternative to previous studies that faced a 

number of computational limitations. The previous efforts are reviewed and discussed. The 

analysis executed for Chapter 3 also satisfies the second requirement for residue removal 

decisions presented earlier. Data produced through this effort provides guidance for making 

decisions about residue removal that matches the scale and computations that will be 

performed by the NRCS to certify sustainability. This data includes nearly 100 million 

residue removal scenarios (each calculated at the 10–100m scale) that describe potential 

residue removal decisions across the entire United States. These scenarios are aggregated to 

provide a national assessment of sustainable agricultural residue removal potential.  
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Chapter 4 focuses on understanding sustainable removal at the field and sub-field scale. 

It discusses the challenges that sub-field scale variability in soil characteristics, surface 

topography, and yield create for determining sustainable residue removal rates. The model 

and data integration strategy is adapted and expanded to support higher fidelity spatial 

datasets required for sub-field scale analysis. The enhanced framework is applied to three 

standard production units to determine if existing residue removal equipment and approaches 

are capable of dealing with sub-field scale variability. The data and integrated modeling tool 

developed through this work satisfies the third requirement by providing biomass producers 

with the tools and information they need to made sustainable residue removal decisions at the 

field and sub-field scale. 

Chapter 5 investigates the potential of variable rate residue removal as an approach for 

overcoming the challenges presented by sub-field scale variability in soil characteristics, 

surface topography, and grain yield. A conceptual single pass variable rate residue harvesting 

configuration was developed and evaluated. The conceptual configuration was compared to 

existing commercially available residue harvest systems, as well as research-based residue 

removal systems reported in the literature. The three fields investigated in Chapter 4 were 

evaluated with the sub-field scale integrated model simulating residue removal with the 

conceptual variable rate harvester. This analysis reports the impacts that the variable rate 

residue harvester has on sustainably accessible residue quantities, and provides insight on the 

performance requirements for the conceptual variable rate harvester within the representative 

fields where the analysis was performed. 

The work presented through these four papers provides a number of key conclusions. 

The application of an integrated modeling framework for multi-factor analysis of sustainable 



www.manaraa.com

 

 

6 

residue removal can provide enhanced data and insight than previous assessments which 

focused on limited environmental factors and land management scenarios. Applying the 

framework for a spatially comprehensive analysis of residue removal potential across the US 

finds that there are over 150 million metric tons of residue that can be sustainably removed 

under current yield and land management scenarios. However, sub-field scale variability in 

soil characteristics, surface slope, and grain yield create challenges for existing residue 

removal equipment. There are several options for dealing with sub-field scale variability. 

One such option shown to have significant potential in this work is a variable rate residue 

harvester.  
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CHAPTER 2.  AN INTEGRATED MODEL FOR ASSESSMENT OF 

SUSTAINABLE AGRICULTURAL RESIDUE REMOVAL 

LIMITS FOR BIOENERGY SYSTEMS 

 

A paper submitted to Environmental Modelling and Software 

D. Muth, Jr.
1,2

 and K. M. Bryden
1
 

ABSTRACT 

Agricultural residues have been identified as a significant potential resource for 

bioenergy production, but serious questions remain about the sustainability of harvesting 

residues. Agricultural residues play an important role in limiting soil erosion from wind and 

water and in maintaining soil organic carbon. Because of this, multiple factors must be 

considered when assessing sustainable residue harvest limits. Validated and accepted 

modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation 

Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil 

Conditioning Index. Currently, these models do not work together as a single integrated 

model. Rather, use of these models requires manual interaction and data transfer. As a result, 

it is currently not feasible to use these computational tools to perform detailed sustainable 

agricultural residue availability assessments across large spatial domains or to consider a 

broad range of land management practices. This paper presents an integrated modeling 

strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, 

and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue 

                                                 
1 Graduate student and associate professor, respectively, Department of Mechanical Engineering, Iowa State Unversity. 
2 Primary researcher and author for correspondence. 
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removal modeling system. This enables the exploration of the detailed sustainable residue 

harvest scenarios needed to establish sustainable residue availability. Using this 

computational tool, an assessment study of residue availability for the state of Iowa was 

performed. This study included all soil types in the state of Iowa, four representative crop 

rotations schemes, variable crop yields, three tillage management methods, and five residue 

removal methods. The key conclusions of this study are that under current management 

practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably 

accessible in the state of Iowa, and that through the adoption of no till practices residue 

removal could sustainably approach 40 million Mg. However, when considering the 

economics and logistics of residue harvest, yields below 2.25 Mg ha
-1

 are generally 

considered to not be viable for a commercial bioenergy system. Applying this constraint, the 

total agricultural residue resource available in Iowa under current management practices is 19 

million Mg. This compares with previously published results showing residue availability 

from 22 million Mg to over 50 million Mg in Iowa.  

2.1 INTRODUCTION 

Global initiatives to develop renewable, low carbon energy sources have identified 

biomass feedstocks as a resource with significant potential (Bauen and Kaltschmitt, 2001). 

Biomass feedstocks provide a renewable pathway to support liquid transportation fuels and 

are also being investigated as a low net carbon feedstock for electricity generation. As in 

many countries, the United States has set national targets for bioenergy production through 

biofuel and biopower generation (Energy Independence and Security Act, 2007). Meeting 
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these goals requires development and utilization of biomass resources well beyond current 

production levels. 

In 2005, a US Department of Energy (DOE) study identified that more than one billion 

tons of biomass may be available annually for energy production in the US (Perlack et al., 

2005). Three hundred million tons of this biomass will come from agricultural residues (i.e., 

materials other than grain including stems, leaves, and chaff [Perlack et al., 2005]). However, 

sustainable use of agricultural residues for bioenergy production must take into consideration 

the critical role of agricultural residue in maintaining soil health and long-term productivity 

(Johnson et al., 2009; Johnson et al., 2006; Wilhelm et al., 2007; and Karlen et al., 2003). A 

recent review study identified six environmental factors that can limit sustainable agricultural 

residue removal—soil organic carbon, wind and water erosion, plant nutrient balances, soil 

water and temperature dynamics, soil compaction, and off-site environmental impacts 

(Wilhelm et al., 2010). These factors result from complex interactions between local soil 

characteristics, climate, and land management practices. Because of the breadth of soils, 

climate, and land management practices, it is not possible to determine the agricultural 

residue removal limits from experimental measurement or current practice at the level of 

detail and accuracy needed for policy decisions. Currently, there are no tools or models that 

perform this type of analysis (Wilhelm et al., 2010). Delivering this tool requires integrating 

the set of models that describe wind erosion, water erosion, and soil carbon together with an 

extensive set of databases that describe soil, climate, and soils management practices.  

Agricultural residue availability analysis is further complicated by the need for aggregate 

assessments across entire states, regions, and the nation. Historically, due to the constraints 

imposed by manual input and interaction with models, large geographic assessments of 
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sustainable agricultural residue removal potential have relied on a reduced-scenario modeling 

approach that utilizes a limited number of representative agricultural production scenarios 

(Graham et al., 2007; Nelson, 2002; and Nelson et al., 2004). Using representative scenarios 

has several weaknesses. To accurately represent the wide variety of soil types, climates, and 

management practices, a large number of scenarios are needed, which requires significant 

computational time. Because of this, the reduced-scenario modeling approach cannot 

effectively represent the decision space. This approach significantly limits the ability of the 

decision maker to explore and understand unique or hypothetical management scenarios and 

provides little capability for performing robust sensitivity analysis. In addition, the manual 

process of developing a set of representative scenarios is not readily extensible. For example, 

adding a new model or a new database requires rebuilding the entire set of representative 

scenarios, which is time-consuming and costly. 

This paper presents an integrated modeling strategy capable of characterizing the 

multiple limiting factors impacting sustainable agricultural residue removal within a single, 

extensible, interactive residue removal analysis system. To do this the integration framework 

must address three requirements: 

1. Seamless integration of existing models. Well-developed, peer-reviewed models and 

databases that address individual aspects of this overall system exist today. These 

models are fully developed, validated, and peer-reviewed. The integration framework 

must be able to incorporate these models without change to their source code or 

validity. 

2. Plug-and-play interaction. The core set of models has been developed independently 

from this framework and from each other. As a result, these models will continue to 
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be updated and revised independently from the integration framework. In addition, 

different scenarios will require different models and databases, and researchers may 

wish to compare the results of one set of models or databases with the results of 

another. Because of this, a “hard coded” approach is not appropriate and the 

integration framework must support interactive update and revision of the models and 

databases within the systems model. 

3. Intuitive, real-time interaction. The integrated computational model will be used by a 

number of different groups and individuals, each with different skills and different 

analysis needs. The framework needs to be able to interactively support the disparate 

needs of each of these groups for varying models, assumptions, scenarios, and user 

interfaces. 

The development of this integrated residue removal modeling system is described in this 

paper. The case study presented demonstrates the initial implementation of this modeling tool 

following the description of the development of the modeling system. 

2.2 BACKGROUND  

2.2.1 Sustainable Residue Removal Studies 

In the past, the majority of efforts regarding the sustainability of agricultural crop 

residue removal were focused on limiting water and wind erosion to the tolerable soil loss 

limits established by the Natural Resources Conservation Service (NRCS) of the US 

Department of Agriculture (USDA). Little effort was focused on the impact of agricultural 

crop residue removal on broader soil tilth or productivity concerns. In 1979, Larson 

conducted one of the first large-scale studies focused on crop residue removal and its effect 
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on soil erosion using the Universal Soil Loss Equation. This study included the Corn Belt, 

the Great Plains, and the Southeast. The effect of tillage practices (i.e., conventional, 

conservation, and no-till) and residue management were investigated with respect to rainfall 

and wind erosion, runoff, and potential nutrient removal. This study found that for the 

management practices and crop yields at the time, nearly 49 million metric ton of residue was 

available annually throughout the Corn Belt. Soil carbon, tilth, and productivity maintenance 

were not considered. 

As a result of limited interest in agricultural residues for energy production during the 

1980s and 1990s, no additional large spatial scale assessments of residue availability were 

performed until more than two decades after Larsen’s study. Nelson, 2002 used the Revised 

Universal Soil Loss Equation (RUSLE) (Renard et al., 1997) and Wind Erosion eQuation 

(WEQ) (NRCS, 2011a) to expand on Larson’s analysis to develop a methodology to estimate 

the sustainable removal rates of corn stover and wheat straw at the soil-type level. This 

methodology considered rainfall and wind-induced soil erosion as a function of reduced and 

no-till field management practices. In 2004, Nelson et al. used the same approach to assess 

five other major one- and two-year cropping rotations (e.g., corn-soybean). Neither of these 

studies addressed soil organic matter as a function of removal. Researchers have also used 

the Revised Universal Soil Loss Equation, Version 2 (RUSLE2) (NRCS, 2011b) and/or Wind 

Erosion Prediction System (WEPS) (USDA-ARS and NRCS, 2008) to address a number of 

erosion-based questions on crop residue removal (Karlen et al., 2003; Nelson, 2002). 

Agricultural residue removal studies have also been performed using the DAYCENT 

(Adler et al., 2007), Environmental Policy Integrated Climate (EPIC) (Gregg and Izaurralde, 

2010), and Agricultural Policy/Environmental eXtender (APEX) (Powers et al., 2008) 
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models. These studies have focused on specific case study analyses without focusing on 

larger scale residue availability projections. Also, these analyses were focused on specific 

sustainability questions, such as greenhouse gas (GHG) impacts of residue removal, carbon 

sequestration impacts, and potential water quality impacts. Each of these models is reviewed 

below.  

RUSLE2 simulates daily changes in field conditions based on soil aggregation, surface 

wetness, field management practices, and residue status, and is driven by daily weather 

parameters. Currently, these parameters are manually entered into RUSLE2 from various 

disparate databases. RUSLE2 is mainly used as a guide for conservation planning and 

accurately represents trends demonstrated in field data (McCool et al., 2004; Foster et al., 

2003). It has been applied to applications involving cropland, pastureland, rangeland, and 

disturbed forestland (Ismail, 2008; Dabney et al., 2006; Foster et al., 2006; Schmitt, 2009). 

Several previous efforts have utilized RUSLE2 to simulate water erosion processes within 

broader analysis efforts ranging from watershed scale soil quality assessments (Karlen et al., 

2008), to assessing risks at abandoned mining sites (Vaszita et al., 2009), and even socio-

economic impacts of biophysical processes (Halim et al., 2007). 

WEPS uses a Fortran 77 computational engine to implement a process-based daily time-

step model that simulates soil erosion due to wind forces by direction and magnitude 

(Wagner and Tatarko, 2001). WEPS, like RUSLE2, simulates daily changes in field 

conditions, models a three-dimensional simulation region requiring a set of parameters 

describing climate, soil aggregation, surface wetness, field scale, field management practices 

(including crop rotation and growth) and residue status, and is driven by daily weather 

projections. WEPS has been evaluated for erosion predictions on cropland fields (Hagen, 
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2004) and has been used previously for case studies in corn stover harvest (Wilhelm et al., 

2007). 

RUSLE2 and WEPS each calculate components of an NRCS-developed metric for 

establishing management practice impacts on overall soil health. This metric is the Soil 

Conditioning Index (SCI). When coupled, the two models perform all of the calculations 

necessary for the integrated systems model to establish the SCI. The SCI provides qualitative 

predictions of the impact of cropping and tillage practices on soil organic carbon, which is an 

important factor in sustainable agricultural residue removal. The SCI has been used to 

support watershed scale soil quality assessments (Karlen et al., 2008), evaluate cropping 

systems in northern Colorado (Zobeck et al., 2008), and investigate southern high plains 

agroecosystems (Zobeck et al., 2007). 

DAYCENT is a biogeochemistry ecosystem model that assesses soil GHG fluxes. It is a 

daily time step version of the CENTURY model (Parton et al., 1998). The DAYCENT model 

utilizes the ecosystem processes represented in CENTURY but also incorporates a land 

surface submodel to simulate plant production, nutrient cycling, and trace gas fluxes. 

DAYCENT has been used for a variety of applications including the assessment of soil N2O 

and GHG fluxes for major US crops (Del Grosso et al., 2005), simulating global crop 

production (Stehfest et al., 2007), and simulating soil carbon in forest ecosystems (Pepper et 

al., 2005).  

The EPIC model (http://epicapex.brc.tamus.edu/) was developed in the 1980s to estimate 

the impact of erosion on soil productivity. EPIC is a field-scale, daily time-step model. It 

simulates crop growth, carbon cycles, and erosion considering weather, soil characteristics, 

landscape, crop rotation, and management practices. EPIC has been used to explore 
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alternative nitrogen management practices (Rejesus et al., 1999), study the impact of high 

crop prices on environmental quality (Secchi and Babcock, 2007), and simulate potential 

switchgrass production in the US (Thomson et al., 2009).  

The APEX model (http://epicapex.brc.tamus.edu/) has been developed as an extension to 

EPIC to simulate at the whole-farm and small-watershed scale. APEX has components that 

consider the routing of water, sediment, nutrients, and pesticides across the landscape. This 

includes components considering groundwater and reservoirs. These features allow the 

APEX model to simulate water quality impacts of land management practice changes. APEX 

has been used to investigate the impacts of alternative practices for livestock farms (Gassman 

et al., 2006), environmental benefits of dairy manure incorporation (Osei, et al., 2003), and 

simulate the potential effects of climate change on erosion and water quality (Williams et al., 

1998). 

Each of these modeling tools provides valuable simulation results for investigating 

factors that can potentially limit sustainable removal of agricultural residues. RUSLE2, 

WEPS, EPIC, and APEX each calculate soil erosion. SCI, DAYCENT, EPIC and APEX 

each simulate the impacts of management decisions on soil carbon cycles. Soil GHG fluxes 

are modeled within DAYCENT, EPIC, and APEX. For this modeling work, the RUSLE2, 

WEPS, and SCI models were chosen for three reasons: (1) each is currently part of the 

USDA conservation management planning process used to certify sustainable management 

practices, which makes the integrated model results directly relevant for bioenergy industry 

decision makers, (2) they take crop yields as model inputs, which facilitates investigation of 

impacts from spatial and temporal variability in crop yield, and (3) they have relatively short 

http://epicapex.brc.tamus.edu/


www.manaraa.com

 

 

17 

model execution times (< 1 minute typically), which makes then viable within an integrated 

multi-model decision framework.  

2.2.2 Model Integration Frameworks 

The definitions of framework are varied and can refer to software libraries, software 

applications, structural components of a building, and everything in between. A general 

definition of framework is “a basic structure underlying a system, concept, or text” (Soanes 

and Stevenson, 2005). In this discussion, framework will refer to a software application that 

is the basic structure utilized to integrate, simulate, and understand complex systems. Padula 

and Gillian (2006) note that the main issues facing the development of software frameworks 

are 

 Verification and validation of federated simulation environments 

 Knowledge capture stemming from these large federated simulation environments 

 Easy access to large simulations through graphical displays 

One of Padula and Gillian’s key ideas is that many frameworks center on creating data 

repositories that tie information to the components they represent (Padula and Gillian, 2006). 

These repositories then enable the users of the frameworks to seamlessly query information 

on a per-component basis.  

Considerable attention has focused on defining and evaluating integrated modeling 

frameworks specifically for environmental modeling applications (Lloyd et al., 2011; Argent 

et al., 2006; Schmitz et al., 2009; Rizzoli et al., 2008). The definition of framework used in 

this paper is consistent with the definition provided by Rizzoli et al. (2008): “a set of 

software libraries, classes, and components, which can be (re-)used to assemble and deliver 

an environmental decision support system (EDSS) or an integrated assessment tool (IAT) to 
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support modeling and processing of environmental knowledge and to enhance the re-

usability and distribution of such knowledge.” Lloyd et al. (2011) further classified 

environmental modeling frameworks as “traditional vs. lightweight” and presented a 

methodology for measuring framework “invasiveness,” defined as the “degree to which 

model code is coupled to the underlying framework.” 

In the model presented here, the goal is to create an integrated residue removal modeling 

tool that utilizes an integration framework to couple the RUSLE2, WEPS, and SCI models 

together with the databases needed. In addition to integrating a set of disparate models and 

databases, the integrated modeling framework chosen also needs to provide an extensible, 

easily understood user interface that enables the user to investigate opportunities for 

agricultural residue removal for energy use. Currently available open-source software 

frameworks addressing one or more aspects of this task include 

 SCIRun for scientific visualization and computational steering (SCI, 2011) 

 Dataflow visualization-oriented packages, such as OpenDX (2011), for visualization 

integration 

 Common Component Architecture (CCA)-capable CCaffeine (Allan, 2005; Bernholdt 

et al., 2006), a general purpose component framework that uses wrappers to work 

with software source units 

 Object Modeling System (OMS) (Lloyd et al., 2011; Ascough et al., 2005; David et 

al., 2002) facilitates component-oriented model development and provides an 

integrated development environment with GIS, visualization, statistical analysis, 

model calibration, and data retrieval tools. 
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 The Invisible Modeling Environment (TIME) (Rahman et al., 2003) utilizes a .NET 

platform to supports the development of new model components, utilization of 

multiple programming languages, testing of model components, and data handling.  

 Open Modelling Interface (OpenMI) (Gregersen et al., 2007; Blind and Gregersen, 

2005) provides a standardized time-step based interface to define, describe, and 

transfer data. 

 VE-Suite (McCorkle and Bryden, 2007), which is a general purpose integration 

package that enables users to interact with coupled engineering models and 

simulations interactively 

Examples of closed-source packages include 

 Matlab’s Simulink
TM

 (MathWorks, 2011) for integrating third-party software such as 

LMS Virtual.Lab
TM

 (LMS International, 2011) with Matlab
TM

 

 Execution Engine
 TM

 (formerly Fiper
 TM

) (Simulia, 2011) for distributed collaboration 

of design teams, which has been customized primarily for GE 

 Aspen Plus
TM

 (AspenTech, 2011) for chemical process plant simulation 

 ModelCenter
TM

 (Phoenix Integration, 2011) for integrating a wide range of third-

party solvers (e.g., Excel™, user subroutines) with optimization and design space 

exploration 

 Protrax
TM

 (2011) for modeling large plants at a system level 

Many of these packages tend to be targeted to specific applications (e.g., Aspen Plus for 

chemical process modeling) and do not address the need for a generalized framework that 

can be used to create integrated computational environments for the engineering of generic 

complex systems and processes. For example, SCIRun has computational steering capability 
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and visualization support but does not provide an extensible method for integrating generic 

simulation and modeling tools. ModelCenter
TM

, Execution Engine
TM

, Protrax
TM

, and 

Matlab’s Simulink
TM

 all provide support for the integration of specific sets of tools or for 

high-level systems modeling capability. OMS, TIME, and OpenMI are focused on 

environmental model integration. OMS 3.0 provides a lightweight architecture using 

annotation for data transfer, but requires access to source code for the models being 

integrated. TIME requires utilization of .NET as the development environment, which 

presents limitations when considering cross-platform implementations. OpenMI is widely 

used in Europe for environmental model integration and provides a specification for linking 

components. Each of these packages fills a specific need and provides a desired set of tools 

for a specific clientele, but they do not include the capability for the inclusion of a generic set 

of models. VE-Suite provides a shared framework that integrates of a generic set of models 

that can be accessed in real time (McCorkle and Bryden, 2007). Models can be included 

without access to the source code. In addition the longer term goal of this project is to 

integrate a broad set of engineering, economic, and environmental analyses. VE-Suite is not 

primarily focused on coupled environmental models, and OMS, TIME, and OpenMI have a 

larger literature base and existing bank of code for environmental model integration. 

However, VE-Suite enables users to incorporate component models and corresponding two-

dimensional and three-dimensional graphical representations to create new plug-and-play 

framework components. By design, the framework components can be distributed across 

computational resources to make the most efficient use of resources. Based on the long term 

goals of this project, VE-Suite was selected as the integration framework for this project. 
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2.3 MODELS AND METHODOLOGY 

2.3.1 RUSLE2 

The RUSLE2 model used for the study was the RUSLE2 Object Modeling Environment 

(ROME) shared library version compiled from the core RUSLE2 code repository on 17 

September 2010. RUSLE2 is a process-based daily time-step model that describes the effects 

of agricultural cropping practices on soil erosion by rainfall and overland water flow. It 

simulates erosion along an overland flow path by accounting for soil detachment and 

deposition processes using an algebraic formulation of mass conservation. RUSLE2 

computes both temporal and spatially variable effects, such as the effect of soil and land 

management varying along a hill slope. RUSLE2 uses a set of databases concerned with soils, 

field management (e.g., tillage), climate, vegetation, and crop growth that are used at various 

times during the simulation period to make daily and/or annual soil loss calculations. 

The prediction of an average annual soil loss is a function of both erodibility and erosivity. 

Erodibility is related to the susceptibility (the inverse of resistance) of the soil to erosion and 

is affected by management. Erosivity is a measure of the forces actually applied to the soil by 

the erosive agents of raindrop impact, water drops falling from plant canopy, and surface 

runoff. 
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Figure 2.1. Information input and output for RUSLE2. 

 

 

Figure 2.2. Conservation of mass principles in the RUSLE2 simulations. 
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Figure 2.1 shows the information flow into and out of the RUSLE2 model. RUSLE2 

simulates soil loss using conservation of mass principles shown in Fig. 2.2. Each of the data 

elements in Fig. 2.1 is used within the model to establish the variables for the RUSLE2 soil 

loss simulation. The RUSLE2 equation for computing average annual soil loss for the ith day 

is presented in Eq. 2.1. 

 
ai rikiliScipi  (2.1) 

where ai is the average annual soil loss for day i, ri is rainfall/runoff, S is the steepness of the 

slope, ki is the soil erodibility, ci is cover-management, li is slope length, and pi is supporting 

practices. Equation 2.1 provides the daily soil loss, or total “Sediment Out” in Fig. 2.2, but 

Eq. 2.1 does not calculate the deposition component of the mass balance. Equation 2.2 

represents the calculation for the deposition rate (i.e., mass per unit area). This equation 

represents simulation scenarios where the sediment load exceeds the transport capacity, 

which is determined through Eq. 2.3. With these parameters established, the steady state 

conservation of mass (Eq. 2.4) is used to establish net detachment and deposition. Eq. 2.5 is 

then used to aggregate the daily time steps determining the average annual soil loss.  

 

Dp 
Vf

q







Tc  g  (2.2)  

where Vf is the fall velocity of the sediment, q is the runoff rate, Tc is the transport capacity of 

the runoff, and g is the sediment load (i.e., mass per unit width). 

 Tc KTqs  (2.3) 

where s is the sine of the slope angle and KT is a transport coefficient calculated considering 

cover management parameters. 

 
gout  gin  xD  (2.4) 
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where gout is the sediment load leaving the lower end of a segment of the slope, gin is the 

sediment load entering the upper end of a segment of the slope, Δx is the length of the 

sediment, and D is the net detachment or deposition within a segment. 

 
A 

aii1

365

 
m

 (2.5) 

where A is the average annual soil loss, m is the number of years in the assessment, and ai is 

as defined in Eq. 2.1. 

Previous studies (Ismail, 2008; Karlen et al., 2008) implemented RUSLE2 within a 

manual data flow process where direct human interaction with the RUSLE2 user interface 

was required for each model run. Modeling systems requiring this level of interaction 

significantly limit the number and character of simulations that can be included in the 

analysis. Several researchers have worked to overcome these limitations by building 

conceptual model representations of RUSLE2 (Hai-yan et al., 2010) or custom recoding of 

the RUSLE2 equation set (Richard et al., 2007). These approaches of using conceptual 

models or recoding to utilize RUSLE2 allow for flexibility in the application of RUSLE2. 

The challenge is that recoding, or developing a simple conceptual model, does not leverage 

the significant investment that has already been made validating the version-controlled 

RUSLE2 core model. The most effective approach to take advantage of the extensive 

validation efforts is to integrate the model without changing code. 

2.3.2 WEPS 

The WEPS model used for this study is version 1.1, released August 30, 2010. There is 

overlap between the data required for the RUSLE2 and WEPS models, but the WEPS model 

requires significantly more data. This data is manually entered into WEPS from various 
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disparate databases. WEPS provides detailed data in annual and period erosion events, as 

well as saltation, creep, suspension, particulate matter less than 10 micrometers (PM-10) 

emissions, wind energy, and boundary loss (Fig. 2.3). Figure 2.4 shows the information flow 

into and out of the WEPS model. There is overlap between the data points required to 

execute the RUSLE2 and WEPS core equations, but the wind erosion processes require 

significantly more parameters. 

 

Figure 2.3. WEPS mathematically simulates the mechanisms for soil loss caused by wind 

using a process-based daily time-step simulation (Hagen et al., 1996). 
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Figure 2.4. The WEPS model requires extensive soils, climate, and management data to 

perform wind erosion calculations. (PM-10 = particulate matter less than 10 micrometers, 

OM = Organic matter, FO = field operation, ER = erosion) 

As shown in Fig. 2.5, WEPS utilizes a set of modular submodels to calculate wind 

erosion-induced soil losses. The submodels interact to characterize the conditions required 

for the soil loss equations within the erosion submodel. The erosion submodel executes mass 

conservation equations for each of the three size classes of eroding soil: (1) suspension (<0.1 

mm), (2) saltation and creep (0.1 to 2.0 mm), and (3) PM-10 emissions (<0.01 mm). Each of 
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these conservation relationships utilize a series of parameters requiring detailed information 

about the simulation site. These parameters are fed into the model through a series of input 

files. The WEPS submodels parameterize and calculate the data points for the core soil loss 

calculations through the data inputs in Fig. 2.4.  

Within WEPS, the erosion process is modeled as conservation of mass on a time-

dependent basis using coupled partial differential equations resolving a computational control 

volume for the three previously mentioned size classes of eroding soil. Each of the 

conservation of mass equations requires a detailed characterization of the field site conditions 

including soil surface characteristics, soil hydrology, vegetative cover, weather events, and 

many others as seen in Fig. 2.4. The submodels in Fig. 2.5 utilize the data inputs from Fig. 

2.4 to provide the detailed site characterization parameters to the conservation of mass 

equations within the erosion submodel. Equation 2.6 is the conservation equation for soil in 

the saltation and creep size class. This equation captures two sources of erodible material, 

emission (Gen) and abrasion (Gan), and two sinks for erodible material, surface trapping (Gtp) 

and suspension (Gss). 

   

(CH)
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 (2.6) 

where x and y equals the horizontal distances (m) in perpendicular directions parallel to the 

simulation region boundaries, t is time (s), C (kg/m
3
) is the average concentration of saltating 

particles in the control volume of height H. The differential saltation discharge (saltation-

sized particles leaving the control volume) terms qx and qy are the components of the saltation 

sized particles, q, leaving the control volume in the x and y directions (kg/ms). Gen, Gan, Gtp, 

Gss are the net vertical soil fluxes from the emission of loose soil, the surface abrasion of 
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aggregates/crusts, the trapping of saltation, and the suspension of fine particles from the 

breakdown of saltation and creep, respectively (kg/m
2
s). Through the convergence of the 

mass balance equations across the control volume, the soil loss is established and the relative 

changes in soil conditions are distributed to the other submodels in Fig. 2.5 for the next time 

step. The other conservation equations, for suspension and PM-10 size classes, work 

functionally the same as Eq. 2.6 within the control volume, but with size class specific source 

and sink terms. 
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Figure 2.5. WEPS core models are built on a Fortran 77 infrastructure that implements a 

modular set of submodels to calculate losses due to wind erosion (Hagen et al., 1996). 

2.3.3 Soil Conditioning Index 

The SCI is comprised of three sub-factors: (1) the organic matter sub-factor (SCI OM); 

(2) the field operation sub-factor (SCI FO); and (3) the erosion sub-factor (SCI ER). The SCI 
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OM sub-factor models the amount of organic material returned to and removed from the soil. 

The SCI FO sub-factor takes into consideration the effects of field operations on organic 

matter decomposition and is calculated using the data describing the field operations in the 

RUSLE2 and WEPS database structures. The SCI ER sub-factor estimates whether erosion 

rates for a given site are degrading, steady-state, or aggrading. This is done by using 

empirical data for tolerable soil losses and comparing scenario results to set the ER sub-

factor. The three sub-factors are used to calculate the SCI in Eq. 2.7 as follows: 

 SCI 0.4 OM (0.4 FO) 0.2 ER  (2.7) 

Through this calculation, the SCI provides a qualitative prediction of the impact of land 

management practices on the level of soil organic matter. An SCI < 0.0 predicts a decrease in 

soil organic matter, whereas an SCI ≥ 0.0 predicts maintained or increased soil organic 

matter. 

Utilizing the SCI to assess the soil organic carbon impacts of agricultural residue 

removal scenarios requires coupled analysis that includes both the WEPS and RUSLE2 

models. The SCI FO component is a characteristic of the specific land management practices. 

The SCI OM component represents the interactions between soil characteristics, residue 

biomass decomposition, and climate conditions. The SCI ER component requires input from 

both RUSLE2 and WEPS to be comprehensive. In the integrated residue removal modeling 

tool described here, RUSLE2 models the SCI OM and SCI FO sub-factors as well as 

accounting for the water erosion component of the SCI ER sub-factor. The wind erosion 

component of the SCI ER sub-factor is calculated by WEPS. The SCI ER sub-factor is 

calculated by WEPS and then provided to RUSLE2 within the integrated model. With the 

data input from WEPS, RUSLE2 completes the SCI calculation.  
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2.3.4 Model Integration Framework 

Three components of VE-Suite have been employed to support the development of the 

integrated environmental process modeling framework built for this analysis—VE-Open, 

VE-Conductor, and VE-CE. Considering the framework design classifications of traditional 

and lightweight provided by Lloyd et al. (2011), VE-Suite has characteristics of both 

classifications, but is more aligned with the lightweight framework classification. 

Specifically, framework components are bound dynamically at run time, are independent of 

the framework, prefer convention over configuration, and are integrated with a “small” 

programming interface (API). The characteristics of VE-Suite, which are more consistent 

with Lloyd et al.’s definition of a traditional framework, are dependencies on additional 

libraries and generalized data structures for framework data transfer. The invasiveness, as 

defined by Lloyd et al., within this integrated model is minimal. Model source code has not 

been changed for the tools integrated in this application. This is an important feature both in 

terms of the models being utilized and the decisions being supported by the integrated model. 

One characteristic important for model selection in this application is the direct connection to 

policy administration by NRCS. The models are continually under refinement and being 

improved, resulting in new releases. Through minimal invasiveness, new releases of the 

models can be implemented within the framework within hours. This creates a seamless 

connection between the decisions supported through this integrated model and the 

conservation management planning process within NRCS. 

VE-Open is the interface specification and set of tools that facilitate the exchange of data 

between framework components. The VE-Open design builds on an open architecture 

approach to integrating information. VE-Open utilizes multiple integration formats by 
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specifying a schema for information to adhere to and leverage other schemas, such as 

COLLADA (Arnaud and Barnes, 2006), which has taken a useful approach to creating an 

extensible specification built on XML and XML Schema. The VE-Open interface 

specification is analogous to that of the Computer-Aided Process Engineering (CAPE)-Open 

specification used by chemical process simulation tools. VE-Open is also analogous to the 

Distributed Interactive Simulation (DIS) specification utilized in military applications to 

share war game simulation information across distributed computer resources with multiple 

clients (Distributed Interactive Simulation Committee of the IEEE Computer Society, 1998). 

Considering familiar tools within the environmental modeling community, VE-Open is 

similar to OpenMI (Gregersen et al., 2007; Blind and Gregersen, 2005) in that it provides a 

clear specification for framework component communication. There are two primary 

differences between VE-Open and OpenMI. First, VE-Open has been developed as a 

generalized interface for engineering applications, whereas OpenMI has been developed with 

a focus on integrated water management. This has resulted in more generalized data 

structures within VE-Open, including the support of advanced visualization. Second, 

OpenMI can require significant code changes to the framework components, whereas VE-

Open has been designed to facilitate the use of executable versions of models. With certain 

modeling tools, this can be limiting in terms of complex two-way interactions, but for this 

framework it is a key feature to support the seamless exchange of model versions as 

described previously. The VE-Open model interface has a number of characteristics 

important in this application, including 

 Simplicity. The functions that are implemented are general and can be adapted to a 

wide variety of simulation environments. 
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 Generalization. The interface removes the specificity of any discipline and provides 

generic structure for data types and software engine structure. 

 Enhanced data passing. The interface provides for passing data beyond the level of 

simple scalars to downstream models. 

VE-Conductor provides the graphical user interface (UI) component of the integrated 

framework. The UI is implemented with the following software design goals: (1) multi-

platform support; (2) detachability; (3) location transparency; (4) extensibility; and (5) 

unified control. The UI is the controller that allows the engineer to interrogate the integrated 

modeling environment. The UI exists independently from the computational engine as a 

separate Common Object Request Broker Architecture component. This functionality allows 

the UI to be attached and detached from an active simulation on any compatible computer on 

the simulation network. For example, a user could build and start a simulation, detach from 

the computational engine or visualization engine, go to a different location, re-attach to the 

simulation, and regain monitoring and control functions.  

VE-CE is the computational scheduler. It constructs, coordinates, schedules, and 

monitors simulation runs. It is capable of running a simulation containing a multitude of 

different types of models, each accepting and generating a myriad of data types. The 

computational scheduler is also able to analyze a simulation configuration, determine 

execution order, marshal system resources to create model instances, and coordinate the flow 

of data through the simulation framework. Tasks that require specific knowledge about a data 

type or model are relegated to either the detachable UI or to a specific model, thus keeping 

the computational engine highly generalized with a lightweight code. 
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2.3.5 The Integrated Residue Removal Modeling Tool 

As discussed earlier, the challenge is to integrate a set of disparate models and databases 

to create an interactive assessment tool that enables a user to investigate opportunities for 

removing agricultural residue for energy use. Figure 2.6 shows the information flow within 

the integrated residue removal modeling system. In this design, the user specifies the area 

that will be assessed. This area can be as small as a single farm or as large as an entire 

country. The mechanisms for selecting the area currently include list box interfaces that 

provide all combinations of political boundaries (e.g., counties and states). The ability to 

input the specific set of soils that define a farm or group of farms is also provided. 

 

Figure 2.6. Representation of the data flows through the integrated residue removal systems 

model. 

The climate data is dynamically acquired and assembled based upon the area(s) selected 

for an assessment. The user assembles the management practices by selecting from the 
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database of approximately 33,000 NRCS-developed management data points. Management 

practices can be selected and assembled at multiple levels. The user can pick a pre-built 

management practice that includes all of the data defining a scenario that represents the area 

of interest. The user can also assemble the management practices by selecting each specific 

tillage, crop, fertilizer, and harvest decision to create a custom land-management scenario. 

Table 2.1 lists the databases and models required for the integrated residue removal systems 

model. 
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Table 2.1. The key data sources and models used are identified with the method for public 

access to the data or model.  

Data Input Database Access 

Soil SSURGO NRCS NASIS Server (http://soils.usda.gov/technical/nasis/) 

RUSLE2 Climate RUSLE2 native.gdb 
format 

http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm 

WEPS Climate CLIGEN http://www.ars.usda.gov/Research/docs.htm?docid=18094 

Wind WINDGEN http://www.weru.ksu.edu/ 

Land Management NRCS native.gdb format http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm 

Crop Yields NASS http://www.nass.usda.gov/ 

Modeling Function Model Access 

Water Erosion/SCI RUSLE2 http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm 

Wind Erosion/SCI WEPS http://www.weru.ksu.edu/weps/wepshome.html 

Integration Framework VE-Suite http://www.vesuite.org 

 

Because these databases are developed and maintained by different organizations, they 

are natively in different formats and provide different mechanisms for access and utilization. 

Each of these databases has been designed for utilization within executable programs 

distributed to NRCS field office computers. Because of this, they have been made publicly 

available for download and have not been designed for direct database access via webservice 

or other online mechanisms. These characteristics make the process of using these databases 

in this integrated systems model via web services slow and infeasible given the number of 

calls to the databases. To overcome this challenge, the databases were brought together and 

managed in an SQLite onsite data repository of less than 50 gigabytes. Although the choice 

of SQLite as a primary database tool for this model satisfies performance requirements, it 

should be noted there are potential downsides to this choice (e.g., the need for data 

duplication when distributing the model and the limitation that write commands can only be 

done one at a time). The use of SQLite databases allows optimized indexing and query 

development for fast communication within this application. The latency of these 
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communications is an important factor because there are more than 20 million database calls 

being executed for this study.  

Three data modules—soils, climate, and management—receive the user instructions and 

interact with the databases to assemble and format the inputs for each model in the integrated 

system, as shown in Fig. 2.6. When the user specifies a scenario, each of the data modules 

processes the instructions and queries the databases required to build its assigned model 

inputs as follows: 

 Soils Data Module. This module provides a fully automated pathway for soils data 

directly from the locally managed SQLite SSURGO database (Fig. 2.7) to reach the 

integrated models in their required input format. For RUSLE2, the soils data is 

assembled into the native model database format, which can be directly loaded and 

used via the model automated programming interface (API). In the case of WEPS, the 

soils data is output to specifically formatted files that are read when the model 

executes. 
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Figure 2.7. Schematic representation of the locally managed SQLite SSURGO database 

managed by the Soils Data Module. 

 Climate Data Module. Climate data for RUSLE2 is assembled into the model’s native 

database format via its API. To support WEPS, the climate data module utilizes the 

climate generator models CLIGEN and WINDGEN as input data sources to generate 

weather files as shown in Fig. 2.8 (USDA-ARS, 2009; Wagner, 1992). CLIGEN and 

WINDGEN are stochastic weather generators that create daily weather events over 

specified time periods. CLIGEN generates daily values for precipitation, minimum 

and maximum temperatures, solar radiation, dewpoint, wind speed, and direction for 

a single geographical location based on historical measurements, whereas the 
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WINDGEN wind generator provides accurate hourly wind speed and direction that 

enables capturing hourly erosion events.Management Data Module. To facilitate 

plug-and-play interaction, the structure and organization of the module heavily 

leverages the USDA NRCS data schema for management scenarios. Leveraging this 

schema is advantageous for several reasons: (1) multiple NRCS models are utilized in 

the framework; (2) the schema is comprehensive and regularly updated; and (3) 

leveraging the NRCS methodology will enable the ongoing use of the work by 

practitioners in NRCS field offices across the country. 

There are four primary interaction requirements for this modeling framework: 

(1) selecting the spatial area of interest; (2) establishing the land management practices; (3) 

selecting and connecting the models; and (4) displaying the results. 

 

Figure 2.8. Block diagram of the climate module functionality. 
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2.3.5.1 Selecting the Spatial Extent for Analysis 

The first function for the user is establishing the areas of interest for an assessment. The 

implementation of the framework used for this study requires selection of areas with political 

boundaries (e.g., counties, states, and countries). User interfaces are in place to select 

assessment areas ranging from a single county to multiple counties to states and to the 

conterminous US. 

2.3.5.2 Establishing Land-management Practices 

Input requirements for describing land management are extensive and variable across 

regions. The land management inputs generally fall into one of four categories: (1) cropping 

rotations; (2) tillage practices; (3) fertilizer applications; and (4) harvest practices. 

Management practice details are required at daily time steps for the models used. Depending 

on the scale of the assessment, the management practices can have different levels of detail 

and assumptions. Larger spatial assessments will utilize a set of management scenarios that 

encompass county or state averages. In the case of individual farms or fields, more precise 

management characteristics may be utilized. 

User selection of management criteria is based on the existing management schemas that 

are available through the USDA NRCS, which has developed an XML-based data schema 

called the “skel” format that provides access to over thirty thousand management elements in 

an NRCS managed SQLite database. The skel format, described in greater detail later, is 

flexible in allowing the use of individual criteria (e.g., a specific piece of tillage equipment), 

or a complete management schema (e.g., all of the elements of a corn-soybean rotation in 

Boone County, IA).  
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2.3.5.3 Selection and Connection of Models 

The framework design facilitates the use of multiple configurations of modeling tools. 

Making this design work requires the ability to create and interact with the network of 

models. VE-Suite’s user interface, VE-Conductor, handles model and database network 

assembly. The user is given the available options for data and models, and is further given 

the ability to drag and drop the tools of choice onto the VE-Suite canvas. The connections 

between the tools on the VE-Suite canvas are then drawn with simple mouse clicks. The 

order of WEPS or RUSLE2 within the network can be seamlessly exchanged, with the SCI 

being the final model because of data input requirements from the other models. For the 

purpose of this study, the system has been configured as shown in Fig. 2.6. Connections on 

the VE-Suite canvas represent two-part sets for VE-CE: (1) the order of the computational 

elements on the canvas, and (2) the specific data elements to be exchanged. Calculation 

routines within the model and data wrappers check for issues associated with the current 

modeling network configuration, tell the user if there are any known problems with the 

current use of the modeling tools. This includes functions within the model wrappers that 

verify data formats and scales are correct for specific data elements. With the model network 

assembled, the user can then interact with each of the models, adjusting parameters as 

required for a specific assessment scenario. With the network built and the parameters set, 

the user initiates the simulation. The VE-Open interface (McCorkle and Bryden, 2007) 

facilitates the exchange of information across each of the models. The individual model 

wrappers include the data instructions and requirements for VE-Open to distribute the data. 

Upon connecting the models on the canvas as described, VE-Open is instantiated and the 
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data structures assembled for use. Feedback loops and two-way model communication can be 

specified with the connections on the canvas. 

2.3.5.4 Display and Interact with Results 

The requirements for interacting with the results are related to the spatial scale and 

fidelity of the assessment being performed. For the case of a specific field, delivering a single 

sustainable harvest rate is potentially the desired answer. In contrast, for precision removal of 

agricultural residue across a field, many thousands of data point results are needed. These 

results may be best delivered through a map. Typically, larger spatial assessments are 

aggregated to county-level results. Often it is preferred to receive these results in a database 

or tabular form, thereby facilitating use within a GIS package. Currently, the integrated 

residue removal modeling tool developed here provides populated databases that are 

formatted to load into external GIS tools for map generation. 

The integrated systems model is built to work through the model scenarios as they are 

defined by the user input. For example, if the user is investigating a single farm they will 

have a set of soils and management practices (including crop yields) that couple with the 

local climate data to define the scenario. If the user is investigating a single average yield and 

actual management practices, then the integrated model will run that yield–management 

combination for each of the soils that comprise that farm. Modern harvesting equipment has 

the ability to collect in-field yield data at approximately 3–5 meter increments. In this case, a 

farm could potentially have thousands of yield–management–soil combinations for that 

single farm. When performing regional scale analyses, the number of soils that need to be 

investigated becomes large. The integrated systems model resolves the yield–management–

soil combinations and iterates the integrated model set for each scenario as required. 
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After the user has assembled the scenario and the data modules have created the model 

inputs, the WEPS model is executed. Figure 2.9 shows the basic process flow for the 

functions performed by the framework interface for the WEPS model. Within the framework 

each WEPS model iteration, including the exchange of data, the construction of input files, 

the running of the model, and the acquisition of the model results, takes between five and 

ninety seconds, depending on the specific yield scenario for which the model is calibrated. 

 

Figure 2.9. The WEPS model wrapper within the toolkit utilizes the data provided through 

the previously described models to perform all necessary functions setting up the WEPS 

model run scenario. 

Upon completion of the WEPS model execution, RUSLE2 then runs and completes the 

analysis flow as shown in Fig. 2.10. The RUSLE2 API is extensible and facilitates the use of 

the model in this function. The data modules deliver the model inputs to RUSLE2 in its 

native database format. Through the API, the database is loaded, and the specific scenario-

defining calls are then executed. Then the results from WEPS that are required to run the SCI 

calculations are delivered to RUSLE2 through the API. The model executes in approximately 

1–2 seconds depending on the size of the input database loaded. When the model has 

successfully completed the run, the API is used to retrieve the results. 
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Figure 2.10. The basic functional flow of the RUSLE2 API wrapper is shown. 

Using the SCI to assess the soil organic carbon impacts of various agricultural residue 

removal scenarios requires coupled analysis with both the WEPS and RUSLE2 models. The 

wind erosion component of the SCI ER sub-factor is calculated by WEPS. As shown in Fig. 

2.6, upon completion of the WEPS model, the data required for SCI calculation is acquired 

from WEPS and passed into RUSLE2. In the modeling framework described here, RUSLE2 

models the SCI OM and SCI FO sub-factors as well as accounting for the water erosion 

component of the SCI ER sub-factor. RUSLE2 then utilizes the WEPS SCI ER sub-factor 

input in the calculations and outputs the SCI result. 

2.3.6 Integrated Model Application 

The integrated residue removal model developed here was used to determine sustainable 

agricultural residue removal rates for the state of Iowa for several scenarios. The goals of this 

study were (1) to quantify residue availability under current production practices, (2) 

quantify the impacts of various tillage management strategies on residue availability, and (3) 

provide county level residue removal results that support environmentally and economically 

sustainable bioenergy production decisions. The study was performed through the following 

steps: 
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1. Define and assemble the analysis scenarios,  

2. Execute the integrated systems model, and  

3. Examine the impacts of tillage decisions. 

The first step was determining the information required to define the cases being studied. 

These include establishing (1) the location and spatial extent of the study, (2) crop rotations, 

(3) tillage managements, (4) residue harvest methods, and (5) land management practices. 

Every scenario run of the integrated systems model requires that these characteristics be 

defined. Using the location and spatial extent; the local crop yields, soils data, and climate 

data are assembled from the coupled databases. As the integrated residue removal systems 

model executes this set of scenario runs, the data management modules are dynamically 

accessed to acquire and format the data needed for each of the models in the integrated 

residue removal systems model. The integrated residue removal systems model loops across 

this complete set of scenario runs pushing each model output to the results database. The 

integrated residue removal systems model then aggregates the county and state level results 

calculated for each of the scenario runs. With the county and state level results established, 

the user can then examine the results and draw overall conclusions. Each of these steps is 

described in greater detail below.  

2.3.6.1 Define and Assemble the Analysis Scenarios 

2.3.6.1.1 CROP ROTATIONS 

Corn and winter wheat represent the two crops produced in Iowa that provide residues 

for bioenergy production. The rotations selected for this study were determined to be 

representative of Iowa’s production systems through a five-year review (2006–2010) of 

USDA NASS production statistics (USDA-NASS, 2011). Corn and soybeans accounted for 
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greater than 90% of managed cropland in Iowa, and the standard crop rotations in the state of 

Iowa are assembled around the primary corn grain crop. Based on this, four standard crop 

rotations representing current practices in Iowa were selected. As shown in Table 2.2 these 

rotations produce corn, soybeans, and winter wheat.  

Table 2.2. Crop rotation schema for the state of Iowa. Symbol reference notations are given 

to support later discussion. 

Rotation Year 1 Year 2 Year 3 Year 4 

Symbol 

Notation Reference 

Continuous Corn Corn Corn Corn Corn CC Rot1 

Corn/Soybean Corn Soybean Corn Soybean CG-SB Rot2 

Corn/Corn/Soybean Corn Corn Soybean Corn CG-CG-

SB 

Rot3 

Corn/Soybean/Winter 

Wheat 

Corn Soybean Winter Wheat Corn CG-SB-

WW 

Rot4 

 

2.3.6.1.2 TILLAGE MANAGEMENT PRACTICES 

As shown in Table 2.3, three tillage regimes were established for each of the four crop 

rotations used in this analysis—conventional tillage, reduced tillage, and no tillage. These 

three tillage regimes match the definitions provided by the Conservation Technology 

Information Center (2011). These three tillage regimes were selected for two primary 

reasons: (1) they cover the range from minimum to maximum soil disruption and (2) they 

represent how the majority of hectares are managed in Iowa. Table 2.3 lists the specific 

tillage operation associated with each crop under each of the tillage regimes. The NRCS 

maintained database of agricultural operations was used to establish key parameters defining 

the interaction between each tillage practice and the soil (NRCS, 2011b). Moldboard plowing 

of corn residue is the most invasive tillage modeled with depths up to 25.4 cm, 100% surface 

disturbance, and 99% residue burial ratios. Chisel plow operations on corn residue are 
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considered reduced tillage operations with depths up to 20.3 cm and residue burial ratios of 

50–76%. Field cultivation operations are used in these modeled rotations to smooth the soil 

surface in the spring before planting. Field cultivation tills to depths up to 15.2 cm with a 

residue burial ratio of 20–40%. 

Table 2.3. The tillage regimes are represented by specific equipment for each crop with the 

rotations. 

 Conventional Tillage Reduced Tillage No Tillage 

Corn Grain Moldboard Plow, Field Cultivation Chisel Plow, Field Cultivation No Till 

Soybeans Field Cultivation No Till No Till 

Winter Wheat Field Cultivation No Till No Till 

2.3.6.1.3 RESIDUE REMOVAL METHODS 

Based on the need to investigate a range of removal rates, five standard residue removal 

methods were modeled for each crop rotation–tillage combination. Each of these harvest 

methods utilizes existing equipment and methods to remove agricultural residues from the 

field. Table 2.4 lists and describes each of these five removal rates. The decision to use 

existing equipment configurations rather than specifying hypothetical removal rates was 

based on the need to understand the orientation of the material left on the field. Often only 

the quantity of material left on the soil is considered when investigating sustainable residue 

removal limits. However, in many scenarios, the orientation of the remaining material is as or 

more important than the quantity. For example, water erosion is best controlled with residue 

covering as much of the soil surface as possible. Wind erosion, on the other hand, is best 

controlled by leaving taller standing stubble in the field to reduce the kinetic energy of the 

wind prior to interaction with the soil surface. By selecting existing harvest methods, the 

orientation of the material remaining on the field can be confirmed. 
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Table 2.4. Description and approximate residue removal rates for the five residue harvest 

methods used in this study. 

Residue Harvest Level Residue Collection Equipment and 

Process 

Approximate Residue 

Collection Rate 

No Residue Harvest Combine harvester functions as normal. 0% 

Harvest Grain and Cobs 

Combine harvester internal mechanisms 

are set to break apart cobs and collect with 

the grain. 

22% 

Moderate Residue Harvest 

Combine harvester residue chopper and 

spreader are disengaged leaving a windrow 

behind the machine. In a second pass a 

baler picks up the windrow making 3'x4'x8' 

square bales. 

35% 

Moderately High Residue 

Harvest 

Combine harvester residue chopper and 

spreader are disengaged leaving a windrow 

behind the machine. A rake is used to 

collect additional surface residue into a 

single windrow. In a third pass a baler 

picks up the windrow making 3'x4'x8' 

square bales. 

52% 

High Residue Harvest 

Combine harvester residue chopper and 

spreadder are disengaged leaving a 

windrow behind the machine. A flail 

shredder is used to cut standing stubble and 

collect surface residue into a single 

windrow. In a third pass a baler picks up 

the windrow making 3'x4'x8' square bales. 

83% 

2.3.6.1.4 LAND MANAGEMENT PRACTICES 

Complete land management practice descriptions were built for each crop rotation–

tillage–removal method combination as described in Tables 2.2–2.4. These were 

conventional, reduced, and no tillage for each of the 5 residue removal methods resulting in 

15 tillage-removal method scenarios that were investigated for each crop rotation. As 

described previously, four crop rotations were modeled resulting in a total of 60 land 

management practice scenarios. The timing of operations in each land management practice 

scenario was assumed to be the same for each county across the state. Table 2.5 shows the 

specific operations and their dates for each rotation for one of the fifteen tillage-removal 
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method scenarios, the reduced tillage–high residue harvest case. Each of the operations was 

selected from the NRCS standard agronomic management database. This database has nearly 

33,000 crops, tillage practices, fertilization practices, planting methods, harvest practices, and 

other standard agronomic operations needed to define a management scenario. The 

parameters necessary to inform the environmental process model calculations are stored as a 

part of each of these database records. For example, the chisel plow tillage operation is 

represented with key parameters such as maximum and minimum tillage depth, surface area 

disturbance, residue burial ratios, surface roughness, and tillage intensity fractions. 

Vegetations such as corn are described with growth charts that represent key growth 

parameters including rootmass, canopy cover, and height, as well as descriptions of biomass 

to grain ratios, above ground biomass, and grain mass. 
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Table 2.5. For the four crop rotations identified in Table 2.2 each operation and its associated 

timing are identified for the reduced tillage–high residue harvest scenario. 

Continuous Corn Corn/Soybean Corn/Corn/Soybean Corn/Soybean/Winter 

Wheat 

11/1  

Year 1 

Chisel Plow 4/20 

Year 1 

Fertilizer 

Application 

4/20  

Year 1 

Fertilizer 

Application 

4/20  

Year 1 

Fertilizer 

Application 

4/25  

Year 2 

Fertilizer 

Application 

5/1  

Year 1 

Field Cultivation 5/1  

Year 1 

Field Cultivation 5/1  

Year 1 

Field 

Cultivation 

5/1  

Year 2 

Field Cultivation 5/1  

Year 1 

Plant Corn 5/1  

Year 1 

Plant Corn 5/1  

Year 1 

Plant Corn 

5/1  

Year 2 

Plant Corn 10/11 

Year 1 

Harvest Corn 

Grain 

10/11  

Year 1 

Harvest Corn 

Grain 

10/11  

Year 1 

Harvest Corn 

Grain 

10/11  

Year 2 

Harvest Corn 

Grain 

10/11 

Year 1 

Shred Standing 

Stubble 

10/11  

Year 1 

Shred Standing 

Stubble 

10/11  

Year 1 

Shred 

Standing 

Stubble 

10/11  

Year 2 

Shred Standing 

Stubble 

10/11 

Year 1 

Rake Residue 10/11  

Year 1 

Rake Residue 10/11  

Year 1 

Rake Residue 

10/11  

Year 2 

Rake Residue 10/14 

Year 1 

Bale Residue 10/14  

Year 1 

Bale Residue 10/14  

Year 1 

Bale Residue 

10/14  

Year 2 

Bale Residue 11/1 

Year 1 

Chisel Plow 11/1  

Year 1 

Chisel Plow 11/1  

Year 1 

Chisel Plow 

  5/15 

Year 2 

Plant Soybeans 4/20  

Year 2 

Fertilizer 

Application 

4/15  

Year 2 

Plant 

Soybeans 

  10/1 

Year 2 

Harvest 

Soybeans 

5/1  

Year 2 

Field Cultivation 9/1  

Year 2 

Harvest 

Soybeans 

    5/1  

Year 2 

Plant Corn 9/15  

Year 2 

Plant Winter 

Wheat 

    10/11  

Year 2 

Harvest Corn 

Grain 

6/15  

Year 3 

Harvest 

Winter Wheat 

    10/11  

Year 2 

Shred Standing 

Stubble 

6/16  

Year 3 

Rake Residue 

    10/11  

Year 2 

Rake Residue 6/17  

Year 3 

Bale Residue 

    10/14  

Year 2 

Bale Residue   

    11/1  

Year 2 

Chisel Plow   

    5/15  

Year 3 

Plant Soybeans   

    10/1  

Year 3 

Harvest Soybeans   
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2.3.6.1.5 CROP YIELDS 

Grain yield for each crop is the input into the integrated systems model that describes 

productivity. Each of the models uses grain yield as the metric to determine residue 

production for the scenario runs. Each of the 60 crop rotation–tillage–removal method 

combinations was run for the nine grain yield scenarios shown in Table 2.6. The relationship 

between corn grain, soybean, and winter wheat was held fixed through these nine scenarios. 

This relationship was determined by developing a linear correlation from the five-year 

average yield statistics (Table 2.6) (2006–2010) provided by USDA NASS (USDA-NASS, 

2011). Actual yields for each county were established using the same NASS production 

statistics five-year averages used to determine rotation distributions. The county level 

averages for corn grain yield are shown in Fig. 2.11. 

Table 2.6. Assumed relationship between corn yield and soybean, winter wheat yields. 

Crop Primary Crop Grain Yield Scenarios Used in this Study (Mg ha
-1

) 

Corn 

Grain 
5.02 6.27 7.53 8.78 10.03 11.29 12.54 13.80 15.05 

Soybeans 1.57 1.76 2.13 2.45 2.82 3.14 3.51 3.89 4.20 

Winter 

Wheat 
1.25 1.57 1.88 2.19 2.51 2.82 3.07 3.39 3.70 
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Figure 2.11. County level average corn grain yields. 

2.3.6.2 Model Execution 

Section 3 presented the integrated residue removal modeling system and described the 

information flow through the modeling tools integrated for this study. As stated earlier, upon 

selecting the location and spatial extent of the analysis the soils and climate data are 

automatically acquired through the integrated databases. With the user inputs as described in 

Section 4.1 the model scenario runs are fully defined and can be executed.  
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2.3.6.2.1 SOILS DATA 

Each crop rotation–tillage–removal method combination described previously was run 

for every soil in the state of Iowa from the NRCS SSURGO national soil survey database. 

Each soil in SSURGO is identified by a map unit symbol and the state of Iowa is comprised 

of over 10,000 soil map units. A map unit represents the base spatial unit for each of the 

model scenario runs. The crop rotation–tillage–removal method combinations create the 

unique scenario runs for each soil map unit. Figure 2.7 provides perspective on the level of 

detail provided by the integrated systems model. Each of the soil parameters shown are 

processed through the soil data module and then delivered to the models within the integrated 

framework. The SSURGO soil map unit served as the base spatial discretized unit for this 

analysis. Figure 2.12 gives perspective on the scale and layout of the SSURGO soil map 

units. As shown, each outlined region represents a specific map unit boundary. The legend 

below the figure provides a description of the map unit labels. The image is approximately 

two kilometers across from left to right, nearly 330 hectares in area, and is comprised of 

thirteen SSURGO soil map units.  

Figure 2.12 represents a 330 hectare section of central Boone County, Iowa. The 

entire county is over 148,000 hectares, and is comprised of over 80 SSURGO soil map units. 

Approximately 70 of those SSURGO map units need to be considered in this analysis (water, 

landfills, etc. can be left out), then accounting for 4 crop rotations, 3 tillage practices, and 5 

removal methods, detailed analysis of residue removal for Boone County requires 4200 

scenario runs of the integrated systems model. In this study the 9 yield sets shown in Table 

2.6 were run. This created a total of 37,800 scenario runs for Boone County. The state of 

Iowa, as mentioned previously, is comprised of over 10,000 soil map units. Accounting for 
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the crop rotation–tillage–removal method–yield combinations applied across the state, 

approximately 5.4 million scenario runs were required to investigate the sustainability of 

agricultural residue removal for energy use. Considering this requirement, it becomes clear 

that a fully integrated data management and modeling approach is essential for performing 

this type of study. Manual interaction with each a set of models is infeasible for generating 

this fidelity of results. Prior to the development of this integrated systems model, a user 

would have to manually perform each scenario run from each model user interface. Manually 

executing millions of scenario runs for each model is not practical, and further complicating 

this process is the necessary interaction with multiple disparate databases required to 

assemble each scenario run. 
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Figure 2.12. SSURGO map unit for a roughly 330 hectare area in central Boone County, IA 

(USDA-NRCS, 2011a). 
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2.3.6.2.2 CLIMATE DATA 

The climate inputs for each residue removal systems model run in this study were 

established at the county level. RUSLE2 core climate databases, provided for each county by 

NRCS, were used for that model, and CLIGEN and WINDGEN files used for WEPS 

simulations were generated through the climate module for each of Iowa’s 99 counties. Each 

SSURGO map unit in Iowa is within county boundaries allowing the set of climate inputs to 

be directly attributed. 

2.3.6.2.3 MODEL PERFORMANCE 

For each soil–crop rotation–tillage–removal method–yield combination, the integrated 

modeling framework distributes data and calculates the multi-factor scenario in 

approximately four seconds (wall-clock time), running a single thread of a standard multi-

core processor desktop workstation. This time is increased for scenario runs where WEPS 

yield calibrations are required. The complete set of runs for this study was distributed on a 

32-node computing cluster comprised of 3.0 GHz Intel Xeon Dual-Core rack-mounted 

machines running Microsoft Server 2003 Enterprise
TM

. Each processor core was given a set 

of county scenarios to run. More than five million integrated residue removal modeling runs 

were performed in less than seven days total. Output databases were aggregated from the 

distributed compute nodes into the SQLite results database. 

The WEPS model was run in standard NRCS field office mode. WEPS was run in 

calibration mode for each SSURGO map unit. Calibrations were set to run a minimum of ten 

and a maximum of fifty cycles, stopping when the modeled yield was within a defined range 

of the target yield. The RUSLE2 model was also run in standard NRCS field station mode. 

2.3.6.2.4 COUNTY AND STATE LEVEL RESULTS AGGREGATION 
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With the model scenario runs complete and the results database populated, there were 

two steps required to establish county, and ultimately state level sustainable agricultural 

residue availability for the integrated systems model. These steps were (1) establishing the 

maximum sustainable removal rate for each soil–crop rotation–tillage combination for the 

crop yield in the county and (2) determining the area in each crop rotation (Table 2.2) for 

each county. The integrated systems model outputs results to an SQLite database, and the 

following steps were performed through an automated SQL query executed to that database.  

The first step in establishing county level results was determining the highest sustainable 

removal rate for each soil–crop rotation–tillage combination in each county. The 

sustainability criteria were implemented as follows: (1) total soil erosion (wind + water) must 

be less than the soil T–value (T is the maximum rate of annual soil erosion allowed for each 

soil map unit as determined by NRCS); and (2) the combined SCI must be greater than or 

equal to zero. The highest of the five removal methods that meets these criteria was selected 

as the sustainable removal rate for each soil map unit and crop rotation–tillage combination. 

As discussed previously the county level crop yields in this study were acquired from a five-

year average of NASS reported yields. The integrated model was run at approximately 1.25 

Mg ha
-1

 increments (Table 2.6), and a linear interpolation was used to scale the residue yield 

to the exact county yield. For example, if the five year average yield is 10.2 Mg ha
-1

, only the 

10.03 and 11.29 Mg ha
-1

 yield scenario residue values were used to calculate the result. 

The second step in establishing county level sustainable agricultural residue harvest rates 

was determining the number of hectares in each of the four crop rotations for each of the 

ninety-nine counties in the state. The NASS statistics that provided county level crop yields 

as described previously were used to get the hectares of each crop in each county. An 
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equation set relating the hectares of each crop to the hectares of the four crop rotations was 

built and put into matrix form. Two sets of equations were required to execute this step: one 

set of counties with winter wheat production, and one set for counties without winter wheat 

production. Given that only one of the four crop rotations included winter wheat, the first 

equation for counties with winter wheat sets all of that crops’ hectares as the corn–soybean–

winterwheat rotation as presented in Table 2.2. The equation also sets the matching number 

of corn and soybean hectares to that rotation, accounting for the crops that are in each year of 

the three-year rotation. The next step in the equation set for counties with winter wheat 

production is attributing the remaining soybean hectares across the corn–soybean and corn–

corn–soybean rotations presented in Table 2.2. An assumption was made that 20% of the 

remaining soybean hectares would go to a corn–corn–soybean rotation, and 80% would be 

attributed to a corn–soybean rotation. The final equation in the set puts the remaining corn 

hectares in the continuous corn rotation as presented in Table 2.2. This equation set is 

represented in matrix form in Eq. 2.8. Within Eq. 2.8 CG represents corn grain, SB 

represents soybeans, and WW represents winter wheat.  
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  (2.8) 

The rotation designations match those listed in Table 2.2. The matrix representation 

facilitates fast and robust calculations from a database. Counties that do not have winter 

wheat production utilize an equation set which has the same assumption of 20% of soybean 

hectares being attributed to corn–corn–soybean rotations and 80% to corn–soybean rotations. 

Again the remaining corn hectares are attributed to the continuous corn rotation. Equation 2.9 

is the matrix representation of the equation set for counties without winter wheat production.  
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An example application of this methodology is shown in Eq. 2.10, which calculates the 

rotation areas (ha) for Lee County in southeast Iowa for the 2008 crop year. Lee County has 

winter wheat production per the NASS statistics, so Eq. 2.8 is used.  
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 (2.10) 

From Eq. 2.10, the 2008 hectares harvested were 29,542; 25,617; and 1,416 respectively 

for corn grain, soybeans, and winter wheat. The results are provided in Table 2.7. 

Table 2.7. Rotation area (ha) for Lee County, IA using 2008 production statistics. 

Continuous Corn Rotation 7,031 

Corn/Soybean Rotation 28,812 

Corn/Corn/Soybean Rotation 16,483 

Corn/Soybean/Winter Wheat Rotation 4,249 
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Figure 2.13 represents the structure assembled for these steps to be executed within 

the integrated residue removal systems model results database. The results database is 

comprised of three components, a soils data component that connects map units to 

information within SSURGO, a management data component that stores the crop rotation–

tillage–removal rate combinations used in the study, and the results data component which is 

populated with the outputs from the integrated residue removal model scenario runs. These 

components are all managed in local SQLite databases, and the aggregation methodology 

was implemented through an SQL query. The first step of determining the maximum 

sustainable residue removal method finds each unique soil–crop rotation–tillage combination 

and performs the sustainability test as described previously, identifying the maximum of the 

five removal methods that meet the criteria. With this step performed the query moves to 

calculating the county level results. The SSURGO soils database is queried to acquire the 

area that each soil map unit represents for a specific county. A summation of the area of all 

soils in a county is performed, and the percentage of area attributed to each soil in the county 

is calculated. This distribution of soils identified for a county is assumed to be the same for 

all crop rotations. The hectares of each crop rotation in a county are then calculated as 

described above. At this point each soil–crop rotation–tillage combination has a sustainable 

removal rate identified, and each soil–crop rotation has the area they account for in a county 

identified. The query now aggregates the results with the selection of the tillage scenario of 

interest. The query performs these steps and calculations on the over five million records in 

approximately thirty seconds on a standard desktop workstation. 
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Figure 2.13. The “by soil type” results were written to an SQLite database and the pictured 

query structure was developed to process the results for scenarios of interest. 

2.4 RESULTS AND DISCUSSION 

2.4.1 Determining the Impacts of Tillage Management Decisions 

Figure 2.14 provides the county level results for the state of Iowa comparing the three 

tillage regimes run for this study, as well as projecting the sustainably available residue based 

on current tillage practices. Current tillage practices were acquired from survey data from the 

University of Purdue’s Conservation Technology Information Center (CTIC, 2011). The 

average tillage practices for the state were assumed for each county. Table 2.8 shows how 

much agricultural residue can be sustainably removed in the state of Iowa, as well as average 

yields under the different scenarios in Mg ha
-1

. The state average yield, AY, from Eq. 2.11 
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shown in column 1 of Table 2.8 represents a simple average of the sustainable yield for each 

county across the state, where AYi is the average yield for each county.  

 

99

1

99

i

i

AY

AY 


 (2.11) 

The mass weighted average, AYMW from Eq. 2.12 shown in column 2 of Table 2.8 

considers not just the county average yields, but also the total mass produced in each county. 

In Eq. 2.12 the statewide mass weighted average yield is AYMW, TMi is the total mass 

produced for each county, and TMS is the total mass produced in the state. 
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 (2.12) 

Under conventional tillage practices, which are disruptive and invasive to the soil, the 

majority of counties (75 out of 99) in the state sustainably provide less than 2.25 Mg ha
-1

 of 

residue. Previous analyses have quantified operational cost sensitivity to residue yield (Hess 

et al, 2009a, Hess et al., 2009b), and the results suggest that 2.25 Mg ha
-1

 is a minimum 

threshold residue removal rate required to support harvest and collection operations from an 

economic and logistics perspective. Using reduced tillage practices, 59 of Iowa’s 99 counties 

can sustainably provide average residue removal rates above the 2.25 Mg ha
-1

 threshold. 

Through the implementation of no tillage practices, all but 10 of the 99 counties average a 

sustainable residue yield above the 2.25 Mg ha
-1

 threshold. 

The results in Fig. 2.14 representing current tillage practices show that 55 of the 99 

counties in the state of Iowa are above the 2.25 Mg ha
-1

 threshold. As shown in Table 2.8, the 

results for the current tillage practices and five-year average grain yields show that more than 
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26 million Mg of residue is sustainably available currently in the state of Iowa. The USDA 

NASS county level grain yields are reported as a county average with no distinction between 

tillage management practices. The assumption is subsequently made in using this data that 

grain yield is the same across all tillage regimes. The average yield per harvested Mg of 

residue is nearly 3.31 Mg ha
-1

. The current total removal potential equates to 27% of the 

residue produced. 

The final column of Table 2.8 provides the impact of considering the 2.25 Mg ha
-1

 

yield threshold. In this data the mass of residue produced in counties that have an average 

yield of less than 2.25 Mg ha
-1

 is discounted. Applying this discount factor has the greatest 

impact on the conventional tillage scenario. These results clearly demonstrate the impact of 

reducing tillage on the availability of agricultural residues for bioenergy production. 

The 26.5 Tg of residue (nearly all of which is corn stover) sustainably available under 

current management practices is higher than the 13.7 Tg of corn stover identified in Iowa by 

Graham et al., 2007. There are three primary reasons for this difference. Graham et al. (2007) 

placed collection constraints on stover removal based on the equipment being modeled which 

are not present in the sustainability study presented here. Another difference is that the 

Graham et al. study represents data from significantly increasing corn production in terms of 

area (4.86 million ha in 2000, and 5.38 million in 2009) and yield (9.0 Mg ha
-1

 in 2000, and 

11.4 Mg ha
-1

 in 2009). The third reason for this difference is the computational extent of the 

studies. The framework approach used in this study has utilized the latest models and 

provided an integrated model capable of dynamic investigation of significantly more soil and 

land management scenarios. 
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This study shows that as no tillage practices are adopted, the potential agricultural 

residue production across the state becomes nearly 40 million Mg annually, or about 40% of 

the total residue produced. The cellulosic biorefinery facility design presented by Aden et al. 

(2002) assumes a plant size of 2,000 metric tons per day and an ethanol conversion rate of 

approximately 320 liters per Mg of corn stover. The results from this study suggest that 

current sustainable agricultural residue available in the state of Iowa could support 38 

biorefineries producing over 8.5 billion liters of cellulosic ethanol. With further adoption of 

no tillage practices, sustainable residue harvest could support as many as 56 biorefineries 

producing over 13.2 billion liters of cellulosic ethanol. Furthermore, these results show that 

there is a significant spatial variation of production potential across the state, as well as 

sensitivity to tillage practices. Variability in productive potential represents a risk across the 

biofuel supply chain and is a key consideration for decision makers. 
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Figure 2.14. County level residue yield for each of the three tillage management approaches, 

and the current tillage practices scenario are presented. 

Table 2.8. State total results for the three tillage scenarios and current tillage practices. 

 

State Average 

Residue Yield 

(Mg/ha) 

Mass 

Weighted 

Average 

Residue Yield 

(Mg/ha) 

Total 

Residue 

(Tg) 

Sustainably 

Harvestable as 

Percentage of 

Total Residue 

Produced 

Total Residue 

Available 

Above 2.25 

Mg/ha 

Residue Yield 

Threshold 

(Tg) 

Conventional 

Tillage 

1.45 2.27 15.1 15% 4.2 

Reduced 

Tillage 

2.66 3.48 27.4 28% 22.5 

No Tillage 3.98 4.48 39.1 40% 32.6 

Actual Tillage 2.59 3.31 26.5 27% 19.0 
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Comparing the tillage scenarios in Fig. 2.14 provides several conclusions. Counties in 

the northwest and north central parts of the state show less sensitivity to tillage. Figure 2.15 

shows a county level relative tillage impact factor, which was calculated by comparing the 

sustainably available residue for each county under conventional tillage as a percentage of 

the residue available under no tillage practices. Equation 2.13 presents this calculation with 

TSi as the tillage sensitivity factor for county i, 
CTiAY  representing the average residue yield 

for county i under conventional tillage, and 
NTiAY  representing the average residue yield for 

county i under no tillage. 
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i

i

AY
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AY

 
  
 
 

 (2.13) 

The central and south central parts of the state show much greater sensitivity to tillage. It is 

useful to note the inverse relationship between corn grain yield (Fig. 2.11) and tillage 

sensitivity (Fig. 2.15). The counties in the state that have consistently high yields show less 

sensitivity to tillage. This is important from two perspectives. The first is that as genetic and 

agronomic advances continue to push grain yields higher in lower yielding counties, the 

sensitivity to tillage in those counties could potentially decrease. The second is that more 

intense tillage is often required with higher grain yields due to the large quantity of residue 

left on the field. The consequence is that removing residue at sustainable levels has the 

potential to allow land managers to do less tillage. The data in Fig. 2.15 in conjunction with 

the final column of Table 2.8 provides critical information for bioenergy producers 

considering the use of agricultural residues under current management practices. Much of the 

state has the ability to provide significant quantities of this resource, but may require 
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management changes to sustainably and economically collect large quantities of this resource. 

The northwest and north central parts of the state, which are less sensitive to tillage, will rely 

less on management changes to facilitate large scale residue harvest. 

Figure 2.15. Identifying if residue removal in a particular area is sensitive to tillage is 

important because that area may require management changes from current practices to 

establish sustainable residue harvest. Lower sensitivity to tillage is desirable in this scenario. 

2.4.2 Integrated Model Verification and Sensitivity 

The models used in this study were integrated with the explicit requirement that source 

code could not be altered through the integrated process. This is important for preserving the 

extensive investment into model development and validation for each of the models. A set of 
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verification runs was assembled and performed to ensure that the results from the integrated 

model resulted in the same conclusions as utilizing the NRCS field office versions. Table 2.9 

shows the results of this comparison from an Adair County example. Two soils with differing 

characteristics in terms of slope and organic matter were selected. The integrated and NRCS 

field office version of the models were compared for a reduced tillage, a corn-soybean 

rotation, and removal rate considering two different yield levels for each of the soils. In all 

cases the results from the integrated and NRCS field office versions of the models provided 

the same conclusions about the sustainability of the particular residue removal scenario. 

Slight differences in the specific erosion values for RUSLE2 can be attributed to significant 

digit rounding differences between the NRCS and integrated versions of the model. The 

results extracted from the RUSLE2 API have up to ten significant digits for each value, 

whereas the results presented through the graphical interface of the model are given with two 

or three significant digits in most cases. Differences in the results for WEPS can be attributed 

to the ongoing development in preparation for a new version release to NRCS field offices. 

The version coupled in the integrated model represents an updated revision of the code as 

compared to the current NRCS field office version. The ability to quickly exchange model 

versions is an important feature of the integrated framework used in this study. During 

development and execution of the model, important changes to the WEPS code were made 

that created better results. For this study, we were able to quickly couple to the latest version 

in the software repository.  

A set of 10 geographically dispersed comparisons were performed to compare the results 

from the integrated model and NRCS field office versions. Table 2.9 presents a subset of 

these comparisons. Specifically, Table 2.9 shows two unique soils from Adair County, Iowa. 
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The “876B Ladoga silt loam, benches, 2 to 5 percent slopes” represents a higher organic 

matter and moderate slope soil, while the “175C2 Dickinson fine sandy loam, 5 to 9 percent 

slopes, moderately eroded” represents a lower organic matter and high slope soil. The 876B 

soil results are presented for a corn-soybean rotation assuming reduced tillage management 

practices and are given for all five residue removal rates. Two different crop yield scenarios 

are shown for 876B in Table 2.9 also. The 876B soil shows little susceptibility to wind 

erosion with the exception of the highest residue removal rate, which cuts down the standing 

corn stubble that serves as a wind break. This soil also shows a reasonably high water erosion 

rate, which progressively increases as the residue removal rate increases. This is an expected 

result because the surface cover provided by the residue to protect the soil is less with higher 

removal rates. In all cases the decision about whether the removal rate is sustainable is the 

same using the integrated model or the NRCS models. The RUSLE2 results are within a 0.4 

Mg ha
-1

 difference, which is approximately 3.5% of the tolerable soil loss limit for this soil. 

The WEPS results are within a 0.16 Mg ha
-1

 difference, which is less than 1.5% of the 

tolerable soil loss difference. The qualitative SCI results all provide the same conclusion for 

the sustainability of the practice. Looking at the higher slope, lower organic matter soil 

175C2, shown in the bottom portions of Table 2.9, the results between the integrated model 

and field office versions will lead to the same decisions about sustainability of the 

management practices. This soil has a higher sand fraction in the top soil layer, which results 

in higher wind erosion rates. The results of the investigation for this soil show that row 

cropping practices on this field have to be handled with caution, and residue removal will 

almost certainly result in negative impacts on the future productive capacity of the soil. For 

the 175C2 soil, the wind erosion rates under the high residue harvest (HRH) cases are more 
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than double the tolerable soil loss rate for the soil. These cases present the largest difference 

between the integrated model and NRCS field office versions, showing a nearly 8% 

difference.  

The results in Table 2.9 present two different soils, two different crop rotations, and two 

different grain yield scenarios, and in all cases the integrated model leads to the same 

decisions as the NRCS field office versions of the models. In the test case scenarios, in 

addition to those presented in Table 2.9, the sustainable residue removal conclusions were 

the same between the NRCS field office and integrated models. 
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Table 2.9. Results comparing the integrated model outputs with the NRCS field office 

versions for two soils with different characteristics and two different yield scenarios. 

Soil: 876B Ladoga silt loam, benches, 2 to 5 percent slopes 

Corn-Soybean Rotation: Reduced Tillage Practices 

Corn Yield: 10.03 Mg ha
-1

 Corn Yield: 7.53 Mg ha
-1

 

Soybean Yield: 2.82 Mg ha
-1

 Soybean Yield: 1.88 Mg ha
-1

 

 Model Outputs (Erosion Rates in Mg ha
-1

)  Model Outputs (Erosion Rates in Mg ha
-1

) 

Rem. 

Rate 

WEPS 

Integrated 

WEPS 

NRCS 

RUSLE2 

Integrated 
RUSLE

2 NRCS 

SCI 

Integrated 

SCI 

NRCS 

Rem. 

Rate 

WEPS 

Integrated 

WEPS 

NRCS 

RUSLE2 

Integrated 

RUSLE

2 NRCS 

SCI 

Integrated 

SCI 

NRCS 

NRH 0.00 0.00 8.80 8.70 0.20 0.19 NRH 0.00 0.00 11.30 11.70 -0.01 -0.01 

HCG 0.00 0.00 9.60 9.40 0.05 0.08 HCG 0.00 0.00 12.30 12.60 -0.11 -0.12 

MRH 0.00 0.00 10.20 10.10 0.03 0.03 MRH 0.00 0.00 13.00 13.20 -0.16 -0.17 

MHH 0.00 0.00 11.30 11.00 -0.08 -0.04 MH

H 
0.00 0.00 14.00 14.30 -0.23 -0.23 

HRH 2.31 2.47 14.60 14.30 -0.34 -0.34 HRH 3.41 3.52 17.70 17.90 -0.55 -0.57 

              

Soil: 175C2 Dickinson fine sandy loam, 5 to 9 percent slopes, moderately eroded 

Continuous Corn Rotation: Reduced Tillage Practices 

Corn Yield: 10.03 Mg ha
-1

 Corn Yield: 7.53 Mg ha
-1

 

 Model Outputs (Erosion Rates in Mg ha
-1

)  Model Outputs (Erosion Rates in Mg ha
-1

) 

Rem. 

Rate 

WEPS 

Integrated 

WEPS 

NRCS 

RUSLE2 

Integrated 
RUSLE

2 NRCS 

SCI 

Integrated 

SCI 

NRCS 

Rem. 

Rate 

WEPS 

Integrated 

WEPS 

NRCS 

RUSLE2 

Integrated 

RUSLE

2 NRCS 

SCI 

Integrated 

SCI 

NRCS 

NRH 0.00 0.00 5.90 5.80 0.43 0.43 NRH 0.00 0.04 8.20 8.30 0.16 0.17 

HCG 0.22 0.13 8.20 7.80 0.17 0.16 HCG 0.93 0.38 11.00 11.20 -0.11 -0.09 

MRH 0.69 0.47 9.50 9.20 0.08 0.04 MRH 1.86 1.14 12.50 12.80 -0.25 -0.22 

MHH 1.14 1.01 11.70 11.40 -0.17 -0.14 MH

H 
3.04 2.71 15.30 15.50 -0.45 -0.43 

HRH 24.88 23.04 20.20 20.20 -1.43 -1.40 HRH 31.32 31.76 24.70 24.70 -1.76 -1.90 

 

2.4.3 Framework Evaluation 

The integrated modeling approach developed here provides a more comprehensive 

understanding of the residue removal issues than previous single model evaluations. The 

current integrated model is extensible for investigating residue removal scenarios for land 

management practices, soil conditions, and climatic conditions across the nation. The model 
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integration framework has met the requirements specified previously for the integration 

framework. First, seamless integration of existing models was satisfied for the RUSLE2, 

WEPS, and SCI models integrated for this study. The tools could then be used within the 

system in the same way they were utilized as standalone executables. Second, plug-and-play 

interaction is available with these tools. The system can function with any combination of the 

three models in the simulation. The most important plug-and-play function supported by the 

framework is the nearly seamless exchange of model versions. The tools used in the 

framework are continually being improved and refined, and their results are used to 

administer policy. For this integrated model to be an effective decision making tool, it needs 

to quickly and effectively make use of new model releases. Third, intuitive, real-time 

interaction is supported for each model.  

There are two components to integrating new models into the framework: (1) ensuring 

the representation of the input data is correct for the new model in the system, and (2) 

ensuring the framework scheduling algorithms are managing the necessary data exchanges 

and model interactions. Considering these two things, the specific level of effort for new 

model integration will be model dependent. The computational engine and data management 

tools currently in place will typically facilitate initial integration in a matter of weeks.  

The ability to integrate the selected models without changes to model source code 

accelerated the development of this integrated model. The tasks of selecting the models and 

assembling the data and information sources for the study required significantly more effort 

than model integration tasks. This can be attributed to the use of the VE-Suite integration 

framework. 
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2.5 CONCLUSIONS 

Determining sustainable removal methods for agricultural residues requires assessing 

multiple agronomic and environmental factors simultaneously. This paper has presented an 

integrated residue removal analysis tool that supports the investigation of sustainable residue 

removal relative to water erosion, wind erosion, and soil organic matter constraints. The 

residue removal analysis tool has been built with the VE-Suite model integration toolkit. The 

WEPS, RUSLE2, and SCI models have been coupled in the residue removal analysis tool. 

The modeling tool includes a robust and generic set of data interfaces supporting interaction 

with the wide variety of data sources required for these assessments. These data interfaces 

are managed through three data modules (climate, soils, and management), which facilitate 

the interaction with raw data sources and the formatting of data for input into the disparate 

models. 

The integrated analysis approach developed here has enabled a more comprehensive 

assessment of sustainable agricultural residue removal than has been performed previously. 

The complex interactions between soils and land management practices creates the need for 

dynamic integrated modeling of the processes that potentially limit access to residues, and 

requires extensive model scenario runs to effectively capture the land management scenarios. 

The soil–crop rotation–tillage–removal rate combinations in this study total to nearly 5.4 

million integrated model scenario runs. This level of fidelity of analysis is infeasible without 

using an integrated modeling framework.  

The residue removal analysis tool developed was used to assess the currently sustainably 

accessible agricultural residue in the state of Iowa. This assessment included an investigation 

of the impact of tillage management practices on residue availability. The results of the 
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assessment show significantly increased residue harvest potential for reduced and no tillage 

management practices. The results also demonstrate that nearly 26.5 million Mg of residue is 

sustainably accessible under currently management practices, enough to produce over 8.5 

billion liters of cellulosic ethanol. The fidelity of results generated for this analysis also 

enable investigation of residue availability under economic and logistics constraints, i.e. the 

impact of the recognized lower threshold of 2.25 Mg ha
-1

 average yield for economic and 

logistic residue removal. This type of data and assessment is critical for supporting the 

development of a bioenergy industry that uses agricultural residues as a biomass resource 

while assuring that our land management practices maintain our soil resources. 

The integrated model approach to exploring the sustainability of agricultural residue 

removal creates opportunities for exploring additional limiting factors and potential impacts 

of residue removal. For example, additional models such as DAYCENT and EPIC can be 

plugged into the system to simulate the nitrous oxide gas flux impacts of residue removal. 

With the existing integration framework in place, adding these additional models will require 

two things: (1) preparing the data modules to format the input data correctly for the 

additional models, and (2) developing the software wrappers that can execute the additional 

models when instructed by the computational engines. For models with API’s, these tasks are 

straight-forward with the existing framework. Models that don’t have API’s can be more 

challenging to integrate.  

There are limitations to the current study. Higher fidelity land management practice data 

is becoming available via the USDA Cropland Data Layer mapping project. Utilizing this 

data in the future will provide better cropping rotation data. Moreover, research is emerging 

that shows that as crop yields get higher, the harvest index (ratio of grain to plant biomass) 
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gets larger also. This would mean that less biomass is available at higher yields. 

Consideration of this harvest index change has not been considered here. The integrated 

modeling framework also needs to be extended to include quantitative soil carbon 

assessments, as well as GHG cycles and water quality. As discussed previously, there are 

available models that can capture these characteristics. 

Further research is needed to extend this analysis to both smaller and larger scales. In-

field variability of grain crop yield and soil characteristics can be significant, and sub-field is 

the scale where residue harvest decisions will be made. In addition this integrated residue 

removal modeling system needs to be extended to high spatial fidelity yield data. This will 

enable investigation of the impact this in-field variability has on sustainable residue 

availability. Another potential application of this type of integrated modeling tool is to 

explore the capability of current residue harvesting technologies, as well as the need for new 

residue harvest equipment. Another important question is what are the potential impacts of 

climate change on sustainable residue removal rates. This question is being investigated as 

part of the next steps for this integrated model. The framework developed here can 

potentially accept a climate change dataset as the climate data input with the Climate Data 

Module being adapted to format the climate change dataset for each model input. 
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CHAPTER 3.  SUSTAINABLE AGRICULTURAL RESIDUE REMOVAL FOR 

BIOENERGY: A SPATIALLY COMPREHENSIVE NATIONAL 

ASSESSMENT 

A paper submitted to Applied Energy 
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ABSTRACT 

This study provides a spatially comprehensive assessment of sustainable agricultural residue 

removal potential across the US is needed to support development and investment decisions 

for an emerging bioenergy industry. Earlier assessments determining the quantity of 

agricultural residue that could be sustainably removed for bioenergy production at the 

regional and national scale faced a number of computational limitations. These limitations 

included the number of environmental factors, the number of land management scenarios, 

and the spatial fidelity and spatial extent of the assessment. This study utilizes an integrated 

multi-factor environmental process modeling and high fidelity land use datasets to perform a 

spatially comprehensive assessment composed of over ten thousand land management 

scenarios of the sustainably removable agricultural residues across the conterminous US. Soil 

type represents the base spatial unit for this study and is modeled using a national soil survey 

database at the 10–100 m scale. Current crop rotation practices are identified by processing 

land cover data available from the USDA National Agricultural Statistics Service Cropland 

Data Layer database. Land management and residue removal scenarios are identified for each 

unique crop rotation and crop management zone. Estimates of county average and state totals 
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of sustainably available agricultural residues are provided. The results of the assessment 

show that in 2011 over 150 million metric tons of agricultural residues could be sustainably 

removed across the US. Projecting crop yields and land management practices out to 2030, 

the assessment determines that over 207 million metric ton of agricultural residue can be 

sustainably removed for bioenergy production at that time. 

3.1 INTRODUCTION 

The US federal government has established goals for biofuel production through the 

Energy Independence and Security Act, 2007. The law specifically calls for US biofuel 

production to increase above 136 billion liters annually by 2022, with approximately 56 

billion liters coming from non-cornstarch feedstocks. Assuming a conversion rate of 330 

liters of biofuel per metric ton for cellulosic feedstock (Aden et al., 2002, Phillips et al., 

2011), meeting this target will require at least 240 million metric tons of biomass resources. 

A number of research efforts have examined cellulosic bioenergy feedstocks such as 

switchgrass, miscanthus, energycane, energy sorghum, willow, hybrid poplar, forest residues, 

and agricultural residues and conversion technologies that can utilize these feedstocks (Jin et 

al., 2010; Li et al., 2010; Heo et al., 2010; Szijártó et al., 2011). Of these feedstocks, the 

resource with the greatest near term potential (1–5 years) for achieving national targets is 

agricultural residues (DOE, 2012).  

Identifying a sustainable and reliable agricultural residue resource base has been a 

significant challenge for the emerging cellulosic biofuels industry (Wilhelm et al., 2010). 

Agricultural residue removal must be managed carefully to be sustainable, and spatial and 

temporal variability (soil, climate, and management practices) impact the reliability of the 

supply. Residues play a number of critical roles within an agronomic system including direct 
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and indirect impacts on soil physical, chemical, and biological processes (Karlen et al., 2003; 

Johnson et al., 2006; and Wilhelm et al., 2007, Wilhelm et al., 2011). Excessive residue 

removal can degrade the long term productive capacity of soil resources (Sheehan et al., 2004, 

Mann et al., 2002). The large capital investments required for cellulosic biorefineries 

(>$100M) require a reliable knowledge of the agricultural residue resource base locally 

available for a facility. The challenge is that the assessments need to provide regional and 

national scale perspectives, but also need to capture local spatial (10-100 m) and temporal 

impacts on residue removal potential. Furthermore, the assessments need to provide analysis 

that leads to residue removal rates that will be certified as sustainable by the Natural 

Resource Conservation Service (NRCS) of the US Department of Agriculture (USDA) 

conservation management planning process.  

To address this need for a robust national assessment of sustainably available 

agricultural residues built upon local soil, climate, and land management data this study 

utilizes an integrated modeling strategy to perform a multi-factor assessment of sustainably 

available agricultural residue across the US. The integrated assessment utilizes the models 

and data currently used by NRCS to administer agricultural land management policy. The 

approach integrates the environmental process models and associated databases required to 

dynamically calculate the impact of residue removal decisions. These calculations are 

performed at the Soil Survey Geographic (SSURGO) Database (NRCS, 2011a) soil type 

scale (10-100 m) and aggregated to county level projections using the USDA Cropland Data 

Layer data (USDA, 2012) (56 m grid). The data produced through the study is consistent 

with the guidance of sustainable agricultural land management practices as administered by 

the farm bill and USDA. Based on this, the results of the integrated assessment performed 
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here are data and analyses that can support cellulosic biorefinery decisions utilizing 

agricultural residues as the primary sources.  

3.2 BACKGROUND 

One of the key challenges associated with identifying potential of agricultural residues is 

accounting for the many important roles that residues play in the agronomic system. Wilhelm 

et al., 2010 performed an extensive review of sustainability indicators for agricultural residue 

removal. The result of this review was the identification of six environmental factors that 

potentially limit agricultural residue removal—soil erosion from wind and water, soil organic 

carbon, plant nutrient balances, soil water and temperature dynamics, soil compaction, and 

off-site environmental impacts. Wilhelm et al. also noted that their review determined that no 

model or methods were available that could comprehensively consider the range of factors 

that potentially limit agricultural residue removal. 

Several previous efforts have considered a subset of Wilhelm’s six limiting factors in 

projecting regional or national sustainable residue availability. The first large spatial scale of 

agricultural residue availability was published by Larson (1979). He estimated that 

approximately 49 million metric tons of crop residues could be sustainably harvested at that 

time in the Corn Belt, Great Plains, and Southeast regions of the US. The focus of this study 

was limiting erosion below tolerable soil loss limits and the calculations were performed 

utilizing the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1978). The study 

investigated the effect of tillage practices on residue removal potential and considered 

nutrient removal impacts. Using USLE at that time required significant spatial aggregation of 

soil characteristics, land management practices, and crop yields to reduce the number of 

calculations. Because of this requirement this study provided regional scale projections of 
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residue availability, but could not provide the local sustainable removal projections needed 

by bioenergy industry decision makers. In addition, Larson’s study did not consider the 

relationship between residue removal and soil organic carbon. 

As a result of low oil prices and generally decreased interest in bioenergy development 

in the US, the next large scale assessment of agricultural residue availability was presented 

by Nelson in 2002. This was the first of a series of assessments focused on residue removal 

within the context of retention requirements. The approach for these assessments was to 

assemble a limited set of representative crops, rotations, and field management scenarios; 

apply them to land capability class 1–4 soils; and then utilize the Revised Universal Soil Loss 

Equation (RUSLE) and the Wind Erosion Equation (WEQ) to generate residue retention 

requirements to limit rainfall and wind erosion below tolerable loss limits. The yield needed 

at time of harvest was then correlated to an average county-level yield to determine the 

possible quantity of available residue at the county scale. The methodology in Nelson, 2002 

was employed for 37 states from the Great Plains to the East Coast for the period of 1995 to 

1997 and determined that over 50 million metric tons of corn stover and wheat straw were 

potentially available annually for removal over this span. Soil organic carbon was not 

considered in this study.  

The ability to determine residue availability at the county scale provided a significant 

step forward in generating data that could support bioenergy industry decisions. However, 

this study was computationally limited in the number of scenarios that could be investigated 

and was not able to consider the variability in soil characteristics and management practices 

that are typically found within a single county. These local (10-100 meters) considerations 
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are important for certifying sustainable removal practices within NRCS conservation 

management planning guidelines, and thus ensuring reliable biomass supplies for biorefiners.  

The methodology developed by Nelson, 2002 was applied to a life cycle assessment of 

corn stover to produce ethanol by Sheehan et al., 2004. This study focused on providing a 

stover–to–ethanol system level analysis including collection, transport, and conversion for 

the state of Iowa. The Nelson, 2002 methodology was extended by including the CENTURY 

agro-ecosystem model (Parton et al. 1988, 2001) to quantitatively assess soil carbon impacts 

of residue removal. The scale of the calculations was county level, consistent with the Nelson, 

2002 methodology. The study made the significant assumptions that all land would shift to a 

continuous corn crop rotation and no-till management practices. These assumptions, along 

with the implementation at county scale, were due to the computational limitations on the 

number of scenarios that could be investigated with the analysis tools being used. Residue 

removal was established using the Nelson, 2002 erosion methodology and the 0, 5, 10, 15, 20, 

and 90 year soil carbon values at the county level removal rates was calculated. The Sheehan 

et al., 2004 study found that for the scenarios investigated soil organic matter is maintained at 

removal rates determined by limiting erosion below tolerable limits. This study provided a 

life cycle perspective on producing ethanol using corn stover in Iowa. However the coarse 

spatial fidelity and limited production scenarios investigated do not provide sufficient detail 

for cellulosic bioenergy industry decision makers. 

In 2004 Nelson et al. introduced an updated methodology that calculated residue 

retention requirements at the SSURGO soil type scale (10-100 meters). The updated 

methodology was applied to the top 10 corn producing states in the US based on total 

production from 1997–2001. SSURGO soils with land capability classes from 1–8 (NRCS, 
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2012) were investigated. The RUSLE and WEQ computational approach from the Nelson, 

2002 study was applied at the soil type scale rather than using county level aggregation. The 

updated methodology investigated a broader set of crop rotations and tillage scenarios. For 

each soil type–crop rotation–tillage combination the residue retention requirement for 

limiting water and wind erosion losses to below tolerable limits was identified. Following 

this additional residue above the retention requirement was identified as available for 

removal based on actual crop yields. Soil organic carbon and general soil tilth were not 

considered. This study concluded that 30.2 million dry metric tons of corn stover and 13.4 

million dry metric tons of wheat straw were available for removal annually across the 10 

states investigated over the five year span from 1997–2001. The Nelson et al., 2004 

methodology advanced sustainable residue availability analysis by investigating scenarios at 

the SSURGO soil map unit scale. Calculations at the soil map unit scale provide useful 

insight for residue removal decisions in individual fields and can be directly applicable 

within the NRCS conservation management planning process. However, the study 

investigated a limited set of environmental factors, land management scenarios, and areas in 

the US. 

The Nelson, 2004 methodology was implemented by Perlack et al., 2005 in a broader 

economic analysis framework for a study outlining the path to a billion-ton annual biomass 

supply in the US. The methodology was applied across the US for a limited set of crop 

rotation and tillage scenarios. The approached considered only erosion constraints. The result 

of this study was that nearly 176 million metric tons of agricultural residues were available 

annually. The study projected that within 35–40 years over 400 million metric tons of 

agricultural residue could potentially be available annually under specific tillage and yield 
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increase assumptions. The results of the Perlack et al., 2005 study were challenged within the 

soil science and agronomy communities as being aggressive in the projections by not 

considering a broader set of limiting factors, specifically soil organic carbon (Wilhelm et al., 

2007; Wilhelm et al., 2010). Despite these objections, by establishing a roadmap to biomass 

resource production at levels that could support large scale cellulosic biofuels production the 

Perlack et al. (2005) provided a key dataset for an emerging biorefining industry.  

A study by Graham et al., 2007 examined corn stover availability and built upon the 

Nelson, 2004 methodology by disqualifying non-irrigated corn production in arid climates on 

the basis that stover would be required on the soil surface to conserve soil moisture. 

Considering soil erosion and the assumed soil moisture constraint, this study estimated that 

58.3 million metric tons of stover could be sustainably removed. The study noted the 

importance of considering soil organic carbon but given the computational limitations of the 

available tools Graham et al., stated that “in its current form with manual input, the Soil 

Conditioning Index is not practical to run for the thousands of corn production situations that 

occur in the USA.” 

Gregg and Izaurralde (2010) designed a factorial modeling study to investigate soil 

erosion, crop yield, soil carbon, and nitrogen balance impacts of residue harvest. The Erosion 

Productivity Impact Calculator/Interactive Environment Policy Integrated Climate (EPIC) 

model (Williams, 1995) was employed for this study. This analysis addressed the 

computational limitations of the existing modeling tools in a similar way to the studies 

discussed previously, by selecting a subset of representative scenarios to determine a broadly 

applicable sustainable removal rate. Gregg and Izaurralde, 2010 investigated a greater 

number of limiting factors than previous studies, but were only able to look at four crop 
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rotations in sixteen counties across the entire country. The conclusions of Gregg and 

Izaurralde, 2010 were that a 30% residue removal assumption will typically be sustainable 

and for flat, highly productive land removal rates could be higher. This provided useful 

perspective on a broad set of factors potentially limiting agricultural residue removal, and 

provided the research community an analysis toolset differing from previous studies. 

However, the results from this study were of limited value to cellulosic bioenergy decision 

makers in terms of identifying a spatial explicit sustainable and reliable resource base, and in 

providing confidence to growers that USDA NRCS conservation management planning 

certification would be attained.  

Muth and Bryden (2011) developed an integrated modeling approach that addressed a 

number of the challenges from previous studies. A model and data integration framework 

was built to allow investigation of the full range of soil characteristics, climate conditions, 

crop rotations, and land management practices. This approach enabled large numbers of 

scenarios to be investigated computationally, thus allowing analyses across a full range of 

spatial scales from field scale to a national assessment. Integrating USDA NRCS models and 

data to calculate soil erosion from wind and water, and soil organic carbon impacts of residue 

removal decisions, this study evaluated potential residue removal scenarios across the state of 

Iowa. The study was performed with SSURGO soil map units as the base spatial units and 

included representative crop rotations, tillage management practices, and crop yields at the 

county level for the state of Iowa. Five commercially available residue removal 

configurations were modeled providing a range of potential removal rates. Over five million 

scenarios were calculated in the study representing residue removal in the state of Iowa. The 

conclusion was that for yield and management practices at the time that the state could 
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sustainably provide nearly 26.5 million metric tons of residue sustainably. The data produced 

from this study provides guidance for cellulosic bioenegy industry decision makers in Iowa 

because it represents the conservation management planning process used to administer farm 

bill programs.  

3.3 METHODS 

 The integrated modeling approach developed by Muth and Bryden, 2011 is used for this 

study. The key limiting factors are modeled as discussed by Muth and Bryden, 2011. Soil 

compaction effects are not included in this study. The assumption used in this analysis is that 

best management practices would be implemented for the specific residue removal scenarios. 

This implies that operational decisions will be made to avoid detrimental soil compaction. 

The potential nutrient replacement requirements from residue removal decisions are 

considered in this analysis. The assumption is made that the required nutrients can be 

replaced through existing operations, but will come at additional costs. This study does not 

directly consider off-site environmental impacts.  

This paper presents an assessment of sustainably removable agricultural residue across 

the conterminous US for bioenergy production. Soil erosion from wind and water, and soil 

organic carbon sustainability factors were considered in the assessment through the 

implementation of the integrated multi-model computation framework presented in Muth and 

Bryden, 2011. The assessment includes two yield scenarios, 2011 projected yields, and 2030 

projected yields. The integrated model is built around the computational methodologies used 

for USDA NRCS conservation management planning, the mechanism used by USDA to 

ensure sustainable agricultural land management. There are several advantages for utilizing 

this approach. The models and datasets, presented in Table 3.1, are well defined, tested, and 
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validated. The validated models are used directly without alteration. This enables leveraging 

of substantial previous investment toward development and validation of the modeling tools. 

Another key advantage of adopting this approach is that the data produced in the analysis can 

be used to make residue removal decisions with confidence that the removal rates will be 

deemed sustainable by USDA. 

 

Figure 3.1. Integrated model utilized for this assessment. (Muth and Bryden, 2011) 

The models used in the integrated model are the Revised Universal Soil Loss Equation 2 

(RUSLE2) (NRCS, 2011c), the Wind Erosion Prediction System (WEPS) (NRCS, 2011d), 

and the Soil Conditioning Index (SCI) (NRCS, 2011e). RUSLE2 simulates daily changes in 

conditions including soil water and temperature dynamics to quantify the impacts of water 

erosion processes. It has been applied to a wide range of land management scenarios 

including cropland, pastureland, rangeland, and disturbed forestland (Ismail, 2008; Dabney et 

al., 2006; Foster et al., 2006; Schmitt, 2009). WEPS is a process-based daily time-step model 
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that simulates how field conditions including soil water and temperature interact with wind 

forces including direction and magnitude. WEPS models a three-dimensional region to 

resolve mass balance equations and project wind erosion impacts. WEPS has been used for 

cropland scenarios (Hagen, 2004), including previous studies for evaluating the impacts of 

corn stover removal (Wilhelm et al., 2007). The SCI utilizes parameters contributed by 

RUSLE2 and WEPS to provide qualitative prediction of the impact of land management 

practices on soil organic carbon. The SCI has been used for a broad range of soil quality 

assessments (Karlen et al., 2008, Zobeck et al., 2008, Zobeck et al., 2007). The integrated 

model in Fig 3.1 is executed for all scenarios where residue producing crops are grown in the 

conterminous US. The following sections describe these scenarios. 

Table 3.1. The key data sources and models used are identified with the method for public 

access to the data or model.  

Data Input Database Access 

Soil SSURGO NRCS NASIS Server (http://soils.usda.gov/technical/nasis/) 

RUSLE2 Climate RUSLE2 native.gdb 

format 

http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm 

WEPS Climate CLIGEN http://www.ars.usda.gov/Research/docs.htm?docid=18094 

Wind WINDGEN http://www.weru.ksu.edu/ 

Land Management NRCS native.gdb 

format 

http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm 

Crop Yields NASS http://www.nass.usda.gov/ 

Modeling 

Function 

Model Access 

Water Erosion/SCI RUSLE2 http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm 

Wind Erosion/SCI WEPS http://www.weru.ksu.edu/weps/wepshome.html 

Integration 

Framework 

VE-Suite http://www.vesuite.org 

 

  



www.manaraa.com

 

 

97 

3.3.1 Soil Data  

The SSURGO soil survey database provides the soil data used in the assessment. The 

SSURGO soil map units represent the base spatial elements for this assessment. SSURGO 

soil map units typically represent spatial discretization in the 10–100 m scale. Figure 3.2 

represents SSURGO map unit spatial data from a 330 ha area in the central Boone County, 

Iowa. The SSURGO data used in this study represents a snapshot from the USDA NASIS 

server from April 8
th

, 2011. The SSURGO snapshot is used in a locally managed SQLite 

database. This choice was made because network or server interruptions would have 

represented a significant challenge considering the total number of queries required (nearly 

600,000). Muth and Bryden, 2011 describe in detail the data flow from the SSURGO 

database into the integrated model. This includes description of the specific queries, data 

tables, and soil characteristics used for each individual model.
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Figure 3.2. SSURGO map units in an approximately 330 hectare area in Boone County, IA . 

The width and height of the figure are slightly greater than 1.8 km (USDA, 2011b). 

 



www.manaraa.com

 

 

99 

The SSURGO soil database includes soils covering agricultural and non-agricultural 

land. Land capability classes ratings range from 1–8. The soils considered in this study have 

SSURGO land capability class ratings of 1–4, that represent the classes considered capable 

for agricultural production. In addition, SSURGO soils with less than 405 ha in each county 

were not considered. Within the area in Fig. 3.2 four of the thirteen soils account for nearly 

90% of the area. This relationship is common for entire counties. The choice to only consider 

soils that represent areas greater than 405 ha within a county reduces computational time 

required for this national scale study by over 70%, but still accurately represents more than 

90% of the agricultural lands.  

3.3.2 Climate Data 

Three data sources are used to provide the required climate data for this assessment; 

NRCS managed RUSLE2 climate databases, the CLIGEN daily climate generator, and the 

WINDGEN daily wind speed and direction generator. The integrated model identifies the 

county location of the SSURGO map unit for a model scenario and loads the required 

RUSLE2 climate data from the NRCS assembled dataset. The WEPS model requires input 

from two climate generator models CLIGEN and WINDGEN. Both generators are stochastic 

models utilizing historic data and provide daily weather inventories for specified time periods. 

CLIGEN generates precipitation, minimum and maximum temperatures, solar radiation, 

dewpoint, wind speed, wind direction as daily inventories for a specific geographic location. 

WINDGEN generates hourly wind speed and direction inventories that provide the WEPS 

model with wind event intensity data required to calculate erosion. The CLIGEN and 

WINDGEN generators used for this study are given the location of the model scenario at the 
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county level based on the SSURGO soil map unit location. The generators are used to create 

75 year datasets to drive the model scenario 

3.3.3 Establishing Crop Rotations 

A new methodology for determining representative crop rotation scenarios and 

establishing the county level distribution of crop rotations is used in this study. In the past 

establishing representative crop rotations for large scale assessments has been challenging 

because of the computational limitation of the number of crop rotation scenarios that could 

be examined and the spatial distribution of crop rotations has not been readily available. The 

integrated model approach used for this study addresses the first challenge by facilitating the 

investigation of significantly more crop rotation scenarios than previous approaches. The 

second challenge has been addressed by the use of the USDA National Agricultural Statistics 

Service (NASS) Cropland Data Layer (CDL) information (USDA 2011). The CDL provides 

spatially explicit descriptions of where different crops are grown by executing a “census by 

satellite” (USDA NASS, 2011) that delivers in-season, spatially explicit remote sensing 

estimates of acreages in a range of crop and land-use categories. Prior to 2009 the CDL data 

was delivered at 56 m resolution with incomplete coverage of the conterminous states. In 

2009 and 2010 coverage for all lower 48 states was delivered at 30 m resolution. Figure 3.3 

represents the 30 m resolution data produced for Iowa in 2009 with a closer look provided for 

Pocahontas County in NW Iowa. The closer look at Pocahontas County shows the fidelity of 

the CDL data and provides perspective on which crops were grown on individual land 

management units, or fields. 
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Figure 3.3. CDL data representing land use in Iowa and Pocahontas County for 2009. 

The methodology developed for this assessment utilizes the CDL product to establish 

three-year crop rotations by overlaying the CDL for each state for 2008, 2009, and 2010. The 

2008 CDL was not published for six states: California, Florida, Idaho, Montana, Oregon, and 

Washington. For these six states the approach was applied to establish two-year crop 

rotations. It should also be noted that the 2008 CDL was delivered at 56 m resolution, so the 

2009 and 2010 CDL’s were scaled from 30 m to 56 m to perform the data layer intersection. 

Data for all three years was spatially joined and intersected for every county in the 

conterminous US. The land cover category in each year for each 56 m grid cell was written to 



www.manaraa.com

 

 

102 

a database. All “like” grid cells were then aggregated. The next step in processing the CDL 

was selecting the crop rotations of interest for this assessment. Those areas that do not 

include at least one year of a residue producing crop were removed. The crops assumed to 

produce removable residue are: barley, corn, rice, sorghum, durum wheat, spring wheat, and 

winter wheat. All wheat crop are reported together in this analysis. It was found that 13.9% 

of the land across the US had a residue producing crop for at least one year from 2008–2010. 

The next step was to remove those areas that had land cover category shifts between 

agricultural and non-agricultural uses. Using the example in Fig 3.4, if any of the years in a 

rotation included one of the following land cover categories it was removed from the dataset: 

urban/developed, woodland, wetlands, water, barren, shrubland. This is reasonable because 

shifts from agricultural categories to non-agricultural categories will typically represent a 

long term move that makes that land unavailable for residue removal; and land that is shifting 

from non-agricultural uses to agricultural uses will typically experience of number of 

agronomic challenges making the transition and residue removal practices are not likely to be 

adopted. In addition those areas that have transitions between agricultural and non-

agricultural land uses often represent error in the spatial processing.  

The multi-year data generated is then mapped to the set of crop rotations to be modeled 

in the assessment. For example Corn-Soybean-Corn grid cells and Soybean-Corn-Soybean 

grid cells are both mapped to a Corn-Soybean rotation for the model scenarios and Corn-

Corn-Soybean grid cells and Soybean-Corn-Corn grid cells are both mapped to Corn-Corn-

Soybeans for the model scenarios. 
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3.3.4 Land Management Scenarios 

Defining a complete land management scenario requires comprehensive descriptions of 

all interaction with the land including the crop(s) grown, fertilizer treatments, tillage 

managements, and crop yields. For this study the land management scenarios use crop 

rotation and geographic location to establish crop planting timing and equipment, tillage 

timing and equipment, grain harvest timing and equipment, and residue removal timing. The 

approach used to define the timing and order of field operations is based on NRCS crop 

management zones (CMZ) (NRCS, 2011e) (Fig. 3.4). NRCS has established the 72 CMZs as 

regions where the field operations and their associated timing are generally consistent. 

Furthermore NRCS has built an extensive database of management operations and scenarios 

using the CMZ methodology.  

Building land management scenarios for a CMZ requires establishing the complete list 

of crop rotations for each county that falls within the CMZ. With all of the unique crop 

rotations identified for each CMZ the land management scenarios including operational 

timing, tillage, and removal rate scenarios are built. Two criteria were applied to limit the 

number of management scenarios for each CMZ. First the rotations in a CMZ were ordered 

from largest area to smallest area. Then moving down on the list the rotations needed to 

include 90% of the area in the CMZ are selected, and all others beyond that cut off point 

were discarded. The second eliminated any rotation that did not comprise at least 405 ha in 

the CMZ. These assumptions significantly reduced the number of computations required 

while still providing an accurate representation of the land management practices for 90% of 

the area. Table 3.2 lists the number of crop rotations for each CMZ. 
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Figure 3.4. NRCS designated crop management zones (DOE, 2012) 
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Table 3.2. Number of crop rotations required for each CMZ to account for 90% of the CMZ 

area. 

CMZ 
No. 

Rots. 
CMZ 

No. 

Rots. 
CMZ 

No. 

Rots. 
CMZ 

No. 

Rots. 
CMZ 

No. 

Rots. 
CMZ 

No. 

Rots. 

01 15 12 1 23 2 36 1 46 5 59 14 

02 72 13 5 24 15 37 27 47 6 60 6 

03 36 14 11 25 8 37.1 27 48 6 62 5 

04 5 15 13 26 2 38 35 49 7 63 10 

4.1 5 15.1 13 27 7 38.1 35 50 8 64 15 

05 15 16 6 28 10 39 22 51 8 65 10 

06 7 17 12 29 7 40 21 52 6 66 22 

07 15 18 6 30 30 41 14 53 7 67 25 

08 7 19 19 32 10 42 24 54 6 68 5 

09 4 20 5 33 26 43 2 55 12 69 18 

10 11 21 1 34 20 44 6 57 22 70 6 

11 17 22 9 35 8 45 1 58 15 71 1 

3.3.5 Tillage Management Practices 

Tillage practices can impact sustainable residue removal (Wilhelm et al., 2010). One of 

the primary reasons tillage operations are performed is to incorporate residues into the soil 

creating more manageable soil surface conditions for planting of the next crop. Because of 

this sustainable residue removal can potentially reduce the need for tillage operations. To 

investigate the impacts and opportunities associated with tillage management practices, three 

tillage regimes were modeled for every crop rotation-residue removal scenario in the 

assessment. The three regimes represent standard practices by CMZ and crop rotation as 

defined by NRCS. The standard practices were collected from the NRCS standard 

management database specified in Table 3.1. For each CMZ the specific tillage equipment, 

the dates that operations were performed, and number of passes were extracted for each crop 

and tillage regime. This data is used to create CMZ and crop specific rules and populate the 
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specific set of tillage operations for each CMZ-crop rotation-tillage regime combination. The 

tillage regimes used in this study are categorized as conventional, reduced, or no-till. These 

tillage regimes in all cases are consistent with the tillage definitions provided by the 

Conservation Technology Information Center (CTIC) (CTIC, 2011). Conventional tillage is 

the most invasive tillage regime including at least one full-width complete soil inversion 

tillage operation resulting in less than 15% residue on the soil surface after planting. 

Conventional tillage typically involves multiple tillage passes. Reduced tillage includes at 

least one full-width tillage pass, but leave up to 30% residue on the soil surface after planting. 

No-till is defined as the minimum soil disturbance required for input of the following crop. 

The specific set of operations for each tillage regime is determined based CMZ and crop 

rotation using the NRCS rule set described previously. Figure 3.5 shows the percentage of 

acres in reduced tillage practices for the 2011 sustainable residue removal projections. The 

correlating data is available for conventional and no-tillage practices. 

3.3.6 Residue Removal Practices 

The agricultural residue removal rate scenarios used in this study follow the schema 

developed by Muth and Bryden, 2011. They included five standard residue removal methods 

for each crop rotation–tillage combination. These residue removal methods each utilize 

existing equipment and methods to remove residues from the field. Table 3.3 lists and 

describes each of these five removal rates. The decision to use existing equipment 

configurations is an important distinction between the assumptions used in this assessment 

and those used in past regional and national scale analyses. The environment process models 

need an accurate representation of the orientation of the material left on the field. Often only 

the quantity of material left on the soil is considered when investigating sustainable residue 
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removal limits. In many scenarios the orientation of the remaining material is as or more 

important than the quantity. The clearest examples of this dynamic is that water erosion is 

best controlled with residue covering as much of the soil surface as possible, while wind 

erosion is best controlled by leaving taller standing stubble in the field to reduce the kinetic 

energy of the wind prior to interaction with the soil surface. There are two advantages to 

selecting existing harvest methods, 1) the models are provided with an accurate 

representation of residue quantity and orientation after harvest and 2) the results of the 

assessment represent the current state of technology by implementing commercially available 

removal operations. 

Table 3.3. Description and approximate residue removal rates for the five residue harvest 

methods used in this study. 

Residue Harvest 

Level 
Residue Collection Equipment and Process 

Approximate 

Residue Collection 

Rate 

No Residue Harvest 

(NRH) 
Combine harvester functions as normal. 0% 

Harvest Grain and 

Cobs (HGC) 

Combine harvester internal mechanisms are set 

to break apart cobs and collect with the grain. 
22% 

Moderate Residue 

Harvest (MRH) 

Combine harvester residue chopper and spreader 

are disengaged leaving a windrow behind the 

machine. In a second pass a baler picks up the 

windrow making 3'x4'x8' square bales. 

35% 

Moderately High 

Residue Harvest 

(MHH) 

Combine harvester residue chopper and spreader 

are disengaged leaving a windrow behind the 

machine. A rake is used to collect additional 

surface residue into a single windrow. In a third 

pass a baler picks up the windrow making 

3'x4'x8' square bales. 

52% 

High Residue Harvest 

(HRH) 

Combine harvester residue chopper and 

spreadder are disengaged leaving a windrow 

behind the machine. A flail shredder is used to 

cut standing stubble and collect surface residue 

into a single windrow. In a third pass a baler 

picks up the windrow making 3'x4'x8' square 

bales. 

83% 
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3.3.7 Yield Scenarios 

County average crop yields are used for all crops in this study. Yield assumptions at the 

county level for residue producing crops match those used for the US Billion Ton Update 

(DOE, 2012) that utilized the USDA Economic Research Service (ERS) Agricultural 

Baseline Projections (USDA ERS, 2012). The ERS Baseline Projections provide projections 

for ten years. The 2030 yield assumptions were linearly extrapolated from the ten-year 

projection to 2030. For crops that were not considered in the US Billion Ton Update county 

level average yields were acquired from USDA NASS using 2008–2010 reported averages 

and no yield increases between 2011 and 2030 was assumed. This assumption is reasonable 

because these crops typically have less historical data to support yield increase projections 

and these are not residue producing crops, but are crops that are in rotation with residue 

producing crops. 

3.3.8 Determining Sustainable Removable Rates 

A residue removal rate is considered sustainable in this analysis if the combined soil loss 

from wind and water erosion is less than or equal to the tolerable soil loss (T-value) reported 

in SSURGO and soil organic matter is not being depleted. For each removal rate scenario the 

wind and water erosion outputs from the models were combined to a total erosion value and 

then compared with the soil T-value from SSURGO. Following this the integrated model 

output for the SCI was tested to be greater than or equal to zero. If the combined soil loss was 

less than the soil T-value and the SCI was greater than or equal to zero then a removal rate 

scenario was considered sustainable. 

 

 



www.manaraa.com

 

 

109 

3.3.9 County and State Level Results 

Establishing county level sustainable agricultural residue removal results requires 

aggregating the soil/crop rotation/tillage/yield scenarios to county level sustainable residue 

quantities and removal rates. First the maximum sustainable removal rate for each soil/crop 

rotation/tillage/yield was determined using the sustainability metrics discussed earlier. 

Following this the sustainable removal managements were attributed to the soils in a county. 

Each SSURGO soil is given a relative area percentage for the county based on the map unit 

acres variable from the SSURGO database. This assumes that all crop rotations and tillage 

management practices for a county are evenly distributed across each soil in that county. The 

county average sustainable residue removal rates for each crop, CRi, are calculated for each 

of the i crops in a county as follows 
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   (3.1) 

where αj is the fraction of area of each j soil, αk,i is the fraction of area for crop i that is in k 

type of rotation, αl is the fraction of area in l tillage regime, and cri,j,k,l is the sustainable 

residue removal rate for crop i in j soil in k type of rotation and l tillage regime. The CRi are 

then summed over the county to determine the total sustainable residue available in each 

county.  
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where TR is the total sustainable residue in a county, and Ai is the area of the county 

producing crop i. State level sustainably removable residue totals are determined by 

summing the sustainable residue available in each of the state’s counties. National total 
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sustainably removable residue quantities are established by summing sustainable residue for 

each of the conterminous states. 

3.4 RESULTS 

Using the assessment procedure discussed above nearly 100 million unique scenarios 

creating a spatially comprehensive representation of the conterminous US were examined. 

The complete set of runs for this study was distributed on a 48-node computing cluster 

comprised of 3.0 GHz Intel Xeon Quad-Core rack-mounted machines running Microsoft 

Server 2008
TM

 with no other computational duties. The wall clock run time for the entire 

assessment was nearly 10 weeks. Figure 3.5 shows the results for the 2011 scenario. The top 

map in Fig. 3.5 shows county level annual sustainable residue availability in terms of metric 

tons. As shown large sections of the Corn Belt, Great Plains, and Pacific Northwest have the 

potential to contribute significant quantities of agricultural residues sustainably for bioenergy 

production. Specifically, 503 counties combined in the 2011 scenario sustainably provide 

over 100,000 metric tons of residues sustainably on an annual basis. The lower portion of Fig. 

3.5 shows the county level sustainable residue removal rates, in metric tons per hectare, for 

each of the five residue producing crops from this study. Higher removal rates will typically 

result in increased economic viability for residue removal operations and removal rates of 

2.25 metric tons per hectare will often provide the best opportunity for economic viability 

(Hess et al, 2009a, Hess et al., 2009b). For all five residue producing crops the majority of 

counties have a sustainable removal rate of less than 2.25 metric tons per hectare for 2011 

yield and land management scenario. Corn stover residue shows the greatest potential for 

higher removal rates primarily because of high total biomass production with corn. Barley 

and wheat have potential for removal rates above 2.25 metric tons per hectare on irrigated 
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production in the Great Plains and Pacific Northwest. Rice residue production is limited to 

the South Central US and areas in California, and removal rates above 2.25 metric tons per 

hectare are found in these regions. Sorghum residue is available across a large region of the 

South Central US and Great Plains, but removal rates for sorghum do not exceed 1.14 metric 

tons per hectare for any county in the country. Table 3.4 shows the sustainable residue 

removal potential by state for the 2011 and 2030 scenarios, as well as providing a 

hypothetical scenario for 2030 that assumes all acres adopt no tillage practices. The Corn 

Belt states of Iowa, Illinois, Nebraska, Minnesota, and Indiana provide 60% of the 

sustainably available residue nationally for the 2011 scenario. This result is consistent with 

the by crop residue totals shown in Table 3.5. Corn stover residue accounts for 81.9% of the 

sustainably available residue in the 2011 scenario nationally.  

The results for the 2030 scenario are shown in Fig. 3.6. The county level sustainable 

residue quantities are significantly higher across the country due to higher grain crop yields 

in the 2030 scenario. In this scenario 605 counties nationally produce 100,000 metric tons or 

greater sustainable residue. As shown in Fig. 3.6 areas in the Corn Belt show significant 

increases in sustainable residue removal potential as compared to 2011. This occurs because 

increasing corn grain yields have the greatest potential impact on sustainable residue 

availability. Table 3.5 shows that corn stover residue grows to 84% of the total residue 

available in the 2030 scenario. The by-crop removal rate maps in Fig. 3.6 show nearly the 

same spatial distribution of residue as the by-crop removal rate maps in Fig. 3.5. The primary 

result is that increased yields provide higher sustainably removal rates for each crop. Corn 

stover residue removal rates approach 11 metric tons per acre for extremely high yielding 

counties under irrigated production. Sorghum residue removal rates remain low with the 
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highest county average at less than 1.3 metric tons per hectare. Table 3.4 shows that the by-

state sustainable residue for the 2030 scenario increase between 30% and 50% for the highest 

producing states with a national increase in sustainable residue of 38%. An interesting note is 

the slight decrease in residue available from Montana. This is a result of the tillage 

assumptions associated with higher crop yields.  

Tables 3.4 and 3.5 also provide the sustainably removable residue quantities for a 2030 

scenario that assumes all acres use no tillage management practices. This scenario is only 

intended to provide a hypothetical upper bound for the sustainable residue removal potential 

accounting for the management practices considered in this study. The total sustainable 

residue potential under this assumptions increases 43% from the standard 2030 management 

assumptions to nearly 300 million metric tons of residues. Considering the individual crop 

results shown in Table 3.5, no tillage management practices provide the largest increases in 

sustainably removable residue for sorghum and rice at 210% and 132% increases 

respectively. The sustainable corn stover residue removal potential increases 40% nationally 

with the all no tillage management practice assumption. 
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Figure 3.5. 2011 sustainable residue scenario results. 
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Figure 3.6. 2030 sustainable residue scenario results 
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Table 3.4. State and US total sustainable residue available in 2011 and 2030 scenarios. Also 

included is a projection assuming 100% of acres adopt no-tillage practices. 

State 

2011 Sustainable 

Residue 

(1000 metric tons) 

2030 Sustainable 

Residue 

(1000 metric tons) 

Percentage 

Increase from 2011 

to 2030 

2030 Sustainable 

Residue – All No 

Till Assumption 

(1000 metric tons) 

IA  25,916  37,321 44% 49,761 

IL  20,935  29,995 43% 44,071 

NE  18,609  25,147 35% 31,542 

MN  16,006  21,252 33% 27,925 

IN  8,615  12,457 45% 18,218 

SD  9,215  11,437 24% 12,890 

ND  7,333  8,614 17% 10,953 

OH  5,687  8,225 45% 10,620 

KS  6,491  8,170 26% 13,156 

WI  4,262  6,392 50% 11,590 

MI  3,200  4,375 37% 7,220 

TX  2,282  3,342 46% 7,296 

MO  2,252  3,303 47% 6,456 

AR  1,792  2,934 64% 6,405 

CO  2,674  2,926 9% 3,474 

KY  1,516  2,413 59% 3,273 

WA  1,863  2,240 20% 2,711 

MT  2,104  2,036 -3% 2,208 

CA  1,575  1,903 21% 2,121 

ID  1,586  1,813 14% 2,184 

NY  938  1,257 34% 2,799 

PA  764  1,246 63% 3,525 

NC  458  1,120 144% 1,701 

OR  961  1,070 11% 1,439 

MD  597  1,022 71% 1,445 

TN  589  1,012 72% 1,443 

OK  362  787 117% 2,821 

LA  448  767 71% 2,654 

MS  401  749 87% 1,762 

VA  296  615 108% 815 
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State 

2011 Sustainable 

Residue 

(1000 metric tons) 

2030 Sustainable 

Residue 

(1000 metric tons) 

Percentage 

Increase from 2011 

to 2030 

2030 Sustainable 

Residue – All No 

Till Assumption 

(1000 metric tons) 

SC  186  448 141% 618 

AL  221  350 59% 404 

DE  203  336 65% 600 

GA  105  239 128% 405 

NM  169  230 36% 285 

UT  133  148 12% 178 

WY  85  103 21% 251 

NJ  46  71 54% 210 

WV  21  37 75% 63 

FL  3  3 21% 7 

US Total  150,897  207,905 38% 297,499 

 

Table 3.5. Results split out by crop. 

Crop 

2011 Sustainable 

Residue 

(1000 metric tons) 

Percentage of 

Total 2011 

Residue 

Provided by 

Each Crop 

2030 Sustainable 

Residue 

(1000 metric tons) 

Percentage of 

Total 2030 

Residue 

Provided by 

Each Crop 

2030 Sustainable 

Residue – All No 

Till Assumption 

(1000 metric 

tons) 

Barley 1,220 0.8% 1,382 0.7% 1,721 

Corn 123,515 81.9% 174,625 84.0% 244,628 

Rice 2,602 1.7% 3,939 1.9% 9,123 

Sorghum 636 0.4% 682 0.3% 2,113 

Wheat 22,924 15.2% 27,277 13.1% 39,914 

Total 150,897 100.0% 207,905 100.0% 297,499 

3.5 SUMMARY 

This study utilized an integrated environmental process modeling strategy to investigate 

sustainable agricultural residue removal potential in the conterminous US. Soil erosion from 

wind and water forces, and soil organic carbon constraints were considered to determine 

sustainability of residue removal. Scenarios were developed for sustainable residue removal 

for 2011 and 2030 crop yield projections. SSURGO soil map units represent the base spatial 
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unit for the assessment and provided the soils data across the country for each of the models 

in the integrated framework. Crop rotations for each county were established by processing 

the CDL land use data from USDA NASS. Land management scenarios were built using 

NRCS CMZ rules for determining operational timing and equipment systems. Three tillage 

regimes were included in the land management scenarios for each crop rotation. Residue 

removal equipment configurations utilized NRCS standard assumptions and included five 

residue removal rates. The integrated modeling framework was iteratively executed resulting 

in nearly 100 million residue removal scenarios to provide a spatially comprehensive 

assessment of sustainably residue removal potential across the country. The assessment 

concluded that over 150 million metric tons of agricultural residues could be sustainably 

removed in 2011 with 82% of that material coming from corn stover. The assessment also 

concluded that yield increases and changing tillage management practices will create the 

potential for nearly 208 million metric tons of residue to be sustainably removed in 2030. 

Corn stover residue accounts for 84% of the sustainable residue in 2030.  

 

  



www.manaraa.com

 

 

118 

ACKNOWLEDGMENTS 

This work was funded by the US Department of Energy’s Office of Biomass Programs. 

The authors gratefully acknowledge significant support from all partners in the DOE 

Biomass Regional Feedstock Partnership Program. The help of Laurence Eaton and Matt 

Langholtz at Oak Ridge National Laboratory with the assembly of the Billion Ton Update 

scenario data and the assistance of Dave Lightle of the Natural Resources Conservation 

Service (retired) in developing the land management scenarios are thankfully acknowledged. 

In addition, Professor Bryden gratefully acknowledges the funding support of the Sun Grant 

Initiative through the Biomass Regional Feedstock Partnership. 

This submitted manuscript was authored by a contractor of the US Government under 

DOE Contract No. DE-AC07-05ID14517. Accordingly, the US Government and the 

publisher, by accepting the article for publication, acknowledges that the US Government 

retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the 

published form of this manuscript, or allow others to do so, for US Government purposes. 

  



www.manaraa.com

 

 

119 

REFERENCES  

Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al., 2002. 

Lignocellulosic biomass to ethanol process design and economics utilizing co-current 

dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL/TP-510-32438. 

Conservation Technology Information Center, 2011. University of Purdue. 

http://www.citc.purdue.edu/ (last accessed 21 June 2011). 

Dabney, S.M., Yoder, D.C., Foster, G.R., Nearing, M.A., 2006. Application of RUSLE2 to 

pasturelands. In: Proceedings of the 14th International Soil Conservation Organization 

Conference, Marrakesh, Morocco. 

Energy Independence and Security Act (EISA) of 2007. H.R. 6, 110
th

 Cong.  

Foster, G.R., Romkens, M.J., Dabney, S.M., 2006. Soil erosion predictions from upland 

areas: A discussion of selected RUSLE2 advances and needs. In: Proceedings of the Sino-

American Workshop on Advanced Computational Modeling in Hydroscience and 

Engineering, Beijing, China. 

Graham, R.L., Nelson, R., Sheehan, J., Perlack, R.D., Wright, L.L., 2007, Current and 

potential US corn stover supplies. Agron. J. 99, 1–11. 

Gregg, J.S., and Izzuaralde, R.C. 2010 Effect of crop residue harvest on long-term crop yield, 

soil erosion and nutrient balance: trade-offs for a sustainable bioenergy feedstock. 

Biofuels. 1(1). 69-83. 

Hagen, L.J., 2004. Evaluation of the Wind Erosion Prediction System (WEPS) erosion 

submodel on cropland fields. Environmental Modelling and Software. 19(2), 171-176 

Heo, H.S., Park, H.J., Yim, J.H., Sohn, J.M., Park, J., Kim, S.S., Ryu, C., Jeon, J.K., Park, 

Y.K. 2010. Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. 

purpurascens, Bioresour. Technol. 101(10), 3672–3677. 

Hess, J., Kenney, K.L., Wright, C.T., Perlack, R., Turhollow, A., 2009. Corn stover 

availability for biomass conversion: situation analysis. Cellulose 16(4), 599–619. 

Hess, J.R., Wright, C.T., Kenney, K.L., Searcy, E.M., 2009. Uniform-format solid feedstock 

supply system: a commodity-scale design to produce an infrastructure-compatible bulk 

solid from lignocellulosic biomass. Idaho National Laboratory, USDOE. INL/EXT-09-

15423.  

Ismail, J., 2008. RUSLE2 model application for soil erosion assessment using remote sensing 

and GIS. Water Resour. Manage. 22(1), 83. 

Jin, M., Lau, M.W., Balan, V., Dale, B.E. 2010.Two-step SSCF to convert AFEX-treated 

switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 



www.manaraa.com

 

 

120 

424A(LNH-ST), Bioresource Technology, Volume 101, Issue 21, November 2010, Pages 

8171-8178. 

Johnson, J.M.F., Reicosky, D., Allmaras, R., Archer, D., Wilhelm, W.W., 2006. A matter of 

balance: conservation and renewable energy. J. Soil Water Cons. 61, 120A–125A. 

Karlen, D.L., Andrews, S.S., Wienhold, B.J., Doran, J.W., 2003. Soil quality: humankind’s 

foundation for survival. J. Soil Water Cons. 58(4), 171–179. 

Karlen, D.L., Tomer, M.D., Neppel, J., Cambardella, C.A., 2008. A preliminary watershed 

scale soil quality assessment in north central Iowa, USA. Soil Tillage Res,. 99(2), 291–

299.  

Keshwani, D.R., and Cheng, J.J., Switchgrass for bioethanol and other value-added 

applications: A review, Bioresour. Technol. 100(4), 1515–1523. 

Larson, W.E. 1979. Crop residues: energy production or control? J. Soil Water Conserv. 34, 

74-76.  

Li, X., Kim, T.H., Nghiem, N.P. 2010. Bioethanol production from corn stover using aqueous 

ammonia pretreatment and two-phase simultaneous saccharification and fermentation 

(TPSSF), Bioresour. Technol. 101(15), 5910–5916. 

Mann L, Tolbert V, and Cushman J. 2002. Potential environmental effects of corn (Zea mays 

L.) stover removal with emphasis on soil organic matter and erosion. Agric. Ecosyst. 

Environ. 89, 149–166. 

Nelson, R.G., 2002. Resource assessment and removal analysis for corn stover and wheat 

straw in the eastern and midwestern United States: rainfall and wind erosion 

methodology. Biomass Bioenergy 22, 349–363. 

Nelson, R.G., Walsh, M.E., Sheehan, J.J., Graham, R.L., 2004. Methodology for estimating 

removable quantities of agricultural residues for bioenergy and bioproduct use. Appl. 

Biochem. Biotechnol. 113, 13–26. 

USDA-NRCS. 2011a. Soil Survey Geographic (SSURGO) Database. Available at 

http://soils.usda.gov/survey/geography/ssurgo/ (accessed 14 Apr. 2011, verified 5 Jan. 

2012). NRCS, Washington, DC. 

NRCS, 2011c. Revised Universal Soil Loss Equation, Version 2 (RUSLE2). Official NRCS 

RUSLE2 Program. http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm 

(last accessed 15 June 2011). 

NRCS, 2011d. Official NRCS-WEPS Site. Wind Erosion Prediction System. 

http://www.weru.ksu.edu/nrcs/wepsnrcs.html (last accessed 15 June 2011). 

 

http://soils.usda.gov/survey/geography/ssurgo/


www.manaraa.com

 

 

121 

NRCS, 2011f. Crop Management Zones. 

http://fargo.nserl.purdue.edu/rusle2_dataweb/NRCS_Crop_Management_Zone_Maps.ht

m 

NRCS Land Capability Classes. 2012. 

http://soils.usda.gov/technical/handbook/contents/part622.html 

Parton, W., J. W. B. Stewart, and C. V. Cole. 1988. Dynamics of C, N, P, and S in grassland 

soils: A model. Biogeochemistry 5: 109–131. 

Parton, W., D. S. Ojima, S. Del Grosso, and C. Keough. 2001. CENTURY tutorial: 

Supplement to CENTURY user’s manual. Fort Collins, CO: Natural Resources Ecology 

Laboratory, Colorado State University. 

Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erback, D.C., 2005. 

Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility 

of a billion-ton annual supply. DOE OBP. DOE/GO-102005–2135.  

Phillips, S., Tarud, J., Biddy, M., Dutta, A., 2011. Gasoline from Wood via Integrated 

Gasification, Synthesis, and Methanol-to-Gasoline Technologies. NREL/TP-5100-47594. 

Sheehan J, Aden A, Paustian K, Killian K, Brenner J, Walsh M, and Nelson R. Energy and 

environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7, 117–146 (2004). 

Schmitt, L.K., 2009. Developing and applying a soil erosion model in a data-poor context to 

an island in the rural Philippines. Environ. Dev. Sust. 11 (1), 19. 

Szijártó, N., Siika-aho, M., Sontag-Strohm, T., Viikari, L. 2011. Liquefaction of 

hydrothermally pretreated wheat straw at high-solids content by purified Trichoderma 

enzymes, Bioresource Technology, Volume 102, Issue 2, January 2011, Pages 1968-1974. 

USDA-NRCS, 2011b. Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/ 

HomePage.htm (last accessed 30 November 2011). 

USDA Crop Land Data Layer. 2012. 

http://www.nass.usda.gov/research/Cropland/SARS1a.htm 

USDA ERS. 2012. Agricultural Baseline Projections. 

http://www.ers.usda.gov/Briefing/Baseline/. 

USDA NASS. http://www.nass.usda.gov/research/Cropland/Method/cropland.pdf. Last 

Accessed 12/31/2011. 

USDA-NRCS. 2012. Using SCI to Assess Management Effects on Soil Carbon. Available at 

http://soils.usda.gov/sqi/concepts/soil_organic_matter/som_sci.html (verified 14 Jan. 

2012). USDA-NRCS, Washington, DC. 



www.manaraa.com

 

 

122 

US Department of Energy (DOE). 2012. 

http://www1.eere.energy.gov/biomass/pdfs/billion_ton_update.pdf 

Wilhelm, W.W., Hess, R.J., Karlen, D.L., Johnson, J.M.F., Muth, D.J., Baker, J.M., et al., 

2010. Balancing limiting factors and economic drivers for sustainable Midwest 

agricultural residue feedstock supplies. Ind. Biotechnol. 6 (5), 271–287. 

Wilhelm, W.W., Johnson, J.M.F., Karlen, D.L., Lightle, D.T., 2007. Corn stover to sustain 

soil organic carbon further constrains biomass supply. Agron. J. 99, 1665–1667. 

Williams J.R., 1995. The EPIC model. Computer Models of Watershed Hydrology. Ed. V.P. 

Singh. Littleton, CO: Water Resources Publications. 909-1000 

Wischmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses. A Guide to 

Conservation Planning. U.S. Dept. Agric., Agric. Handbook No. 537 

Zobeck, T.M. Halvorson, A.D., Wienhold, B., Acosta-Martinex, V., Karlen, D.L. 2008. 

Comparison of two soil quality indexes to evaluate cropping systems in northern 

Colorado. Journal of Soil and Water Conservation. 63(5), 329-338. 

Zobeck, T.M., Crownover, J., Dollar, M., Van Pelt, R.S., Acosta-Martinez, V., Bronson, K.F., 

and Upchurch, D.R. 2007. Investigation of Soil Conditioning Index values for Southern 

High Plains agroecosystems. Journal of Soil and Water Conservation. 62(6). 433-442. 

 

  

http://www.jswconline.org/search?author1=T.M.+Zobeck&sortspec=date&submit=Submit
http://www.jswconline.org/search?author1=A.D.+Halvorson&sortspec=date&submit=Submit
http://www.jswconline.org/search?author1=B.+Wienhold&sortspec=date&submit=Submit
http://www.jswconline.org/search?author1=V.+Acosta-Martinez&sortspec=date&submit=Submit
http://www.jswconline.org/search?author1=D.L.+Karlen&sortspec=date&submit=Submit


www.manaraa.com

 

 

123 

CHAPTER 4.  MODELING THE IMPACT OF VARIABILITY AT THE SUB-

FIELD SCALE ON SUSTAINABLE AGRICULTURAL 

RESIDUE REMOVAL 

A paper submitted to Agronomy Journal 
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ABSTRACT 

This paper develops a computational strategy that utilizes data inputs from multiple 

spatial scales to investigate how variability within individual fields can impact sustainable 

residue removal for bioenergy production based on soil erosion from wind and water, and 

soil organic matter constraints. Agricultural residues are the largest potential near term 

source of biomass for bioenergy production. Sustainable use of agricultural residues for 

bioenergy production requires consideration of the important role that residues play in 

maintaining soil health and productivity. Several previous analysis studies have developed 

methodologies and tools to estimate sustainable agricultural residue removal by considering 

important environmental constraints such as soil loss from wind and water erosion and soil 

organic carbon at field scale or larger but have not considered variation at the sub-field scale. 

Increased availability of sub-field scale datasets such as grain yield data, high fidelity digital 

elevation models, and soil characteristic data provides an opportunity to investigate the 

impacts of sub-field scale variability on sustainable agricultural residue removal. Using three 

representative fields in Iowa, this paper contrasts the results of current NRCS conservation 
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management planning analysis with sub-field scale analysis for rake and bale removal of 

agricultural residue. The results of the comparison show that the field average assumptions 

used in the NRCS conservation management planning may lead to unsustainable residue 

removal decisions for significant portions of some fields. This highlights the need for 

additional research on sub-field scale sustainable agricultural residue removal including the 

development of real-time variable removal technologies for agricultural residue. 

4.1 INTRODUCTION 

The Energy Independence and Security Act, 2007, requires annual US biofuel 

production to increase to more than 136 billion liters by 2022. Nearly 80 billion liters of this 

production must come from non-cornstarch feedstock. Given a conversion rate of 330 liters 

of biofuel per metric ton of biomass feedstock (Aden et al., 2002; Phillips et al., 2011), 

meeting this target will require the development and utilization of over 240 million metric 

tons of biomass resources. In the near term the largest potential source of this feedstock is 

agricultural residue, that is, material other than grain including stems, leaves, and chaff 

(Perlack et al., 2005). However, sustainable removal of agricultural residue is constrained by 

the role agricultural residue plays in maintaining soil health and productivity (Karlen et al., 

2003; Johnson et al., 2006; Wilhelm et al., 2007).  

Wilhelm et al. (2010) identified six environmental factors that potentially limit 

sustainable agricultural residue removal—soil organic carbon, wind and water erosion, plant 

nutrient balances, soil water and soil temperature dynamics, soil compaction, and off-site 

environmental impacts. A number of studies have considered subsets of these factors in an 

effort to determine the potential sustainable agricultural residue available for biofuel 

production (Nelson et al., 2004; Graham et al., 2007; Wilhelm et al., 2007; Gregg and 
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Izaurralde, 2010; Muth and Bryden, 2012). The focus of these studies has been establishing 

the potential availability of agricultural residues over large geographic regions, or 

establishing best management practices for guiding residue removal decisions. Currently, 

there are no computational methodologies or strategies for determining sustainable residue 

removal at the sub-field scale.  

This paper presents a modeling strategy that integrates together the individual models 

and databases required to evaluate sustainable agricultural residue removal potential at a sub-

field scale based on specific crop yield, soil characteristics, and surface topography data. 

Following a discussion of this computational model, sustainable agricultural residue removal 

from three typical Iowa fields is examined using both the current NRCS guidelines and the 

sub-field modeling process discussed here, and the results are contrasted.  

4.2 BACKGROUND 

Past agricultural crop residue removal modeling efforts have focused on soil erosion 

from wind and water. Residue removal has been considered sustainable for removal rates 

where computed erosion losses are less than the tolerable soil loss limits established by the 

Natural Resource Conservation Service (NRCS) of the US Department of Agriculture 

(USDA). Larson used the Universal Soil Loss Equation in 1979 to perform the first major 

assessment of the sustainability of removing agricultural residues. This study examined soils 

and production systems in the Corn Belt, the Great Plains, and the Southeast US. Residue 

removal was investigated under a range of tillage practices with respect to erosion constraints 

and potential nutrient replacement requirements. The broader issue of soil health and long 

term productivity, specifically soil organic carbon levels, was not considered. This study 

used area-weighted averages for soil, climate, and crop yields across USDA’s Major Land 
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Resource Areas (MLRAs) (USDA, 2006). The MLRAs investigated by Larson et al. were 

comprised of groups of approximately 5–20 counties. Soils were averaged to the MLRA 

level by extracting the primary erodibility factors for each soil from available survey data, 

and then using an area weighted average to generate average erodibility factors for the 

MLRA.  

The Revised Universal Soil Loss Equation (Renard et al., 1997) and Wind Erosion 

eQuation (Fasching, 2006) were used by Nelson in 2002 to estimate sustainable removal 

rates of corn (Zea mays L.) stover and wheat (Triticum aesivum L.) straw. This study 

expanded Larson’s analysis through the use of the Soil Survey Geographic (SSURGO) 

Database (USDA-NRCS, 2012b), an open access national soil survey database provided by 

NRCS. Nelson’s methodology considered water and wind induced erosion at the SSURGO 

soil map unit spatial scale for reduced and no tillage management practices. This study was 

based on “county average, hectare-weighted fields.” The approach developed county level 

composite soil characteristics that were used to establish erodibility factors for the erosion 

equations. This analysis found that in 1997 the midwestern and eastern United States could 

have sustainably supplied more than 58 million metric tons of corn stover and wheat straw. 

In 2004, Nelson et al. expanded this assessment with two additions: (1) including five one- 

and two-year crop rotations (e.g., corn-soybean [Glycine max (L.) Merr.]) and (2) calculating 

erosion at the SSURGO soil type spatial scale. At the soil type scale, residue retention 

requirements were established for each management scenario using county average crop 

yields. Each soil was assessed using the representative slope from the SSURGO database. 

This study considered wind and water induced soil erosion constraints and found that if all 

acres were in a corn-soybean rotation using reduced tillage practices; nearly 398 million 
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metric tons of agricultural residue could be sustainably removed annually from the 10 highest 

corn grain producing states in the United States. Graham et al. (2007) utilized Nelson’s 

methodology to perform a nationwide corn stover availability assessment. The spatial scale 

of data and analysis assumptions were consistent with Nelson’s, but an additional constraint 

was added to this by restricting stover removal from non-irrigated production in dry climates. 

This constraint was included based on an assumption that for non-irrigated production in dry 

climates, all stover was required on the soil surface to help maintain soil moisture levels. 

Including this additional constraint, Graham et al. (2007) found that sustainable national 

stover potential was nearly 106 million metric tons annually.  

The NRCS announced in 1998 that it was accelerating the development of a new erosion 

prediction model for implementation in its field offices by 2002 (USDA-ARS, 2010). The 

new model was the Revised Universal Soil Loss Equation, Version 2 (RUSLE2) (USDA-

NRCS, 2011b). RUSLE2 provided the ability to consider additional management and soil 

scenarios by adopting physics-based algorithms that detail the various environmental 

processes in place of the empirical factor-based relationships used in RUSLE. Through the 

development of RUSLE2, the NRCS conservation management planning process transitioned 

to process-based environmental modeling. In recent years the NRCS has continued that 

transition to process-based analyses by adopting the Wind Erosion Prediction System 

(WEPS) (USDA-ARS and NRCS, 2008), and Soil Conditioning Index (SCI) (USDA-NRCS, 

2012) models in conjunction with RUSLE2 for conservation management planning. The 

NRCS field office implementation of RUSLE2, WEPS, and SCI utilizes representative soil 

and slope, and field average yield assumptions to analyze a management plan for a particular 

field (USDA-NRCS Iowa, 2008). The choice for a representative soil and slope are based on 
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selecting the “dominant critical” soil area. The NRCS field office technical note describes the 

dominant critical soil area as having the following characteristics, (1) it is significantly large 

enough to effect a change in management, (2) it is not an average of the field characteristics, 

(3) it is not the worst case scenario, and (4) if dominant in terms of area it is not the flattest or 

least erosive soil in the field. There are two primary questions the models are used to answer. 

The first is whether soil loss due to erosion is greater than the tolerable soil loss limits (T 

value) set by the NRCS for each SSURGO database soil type. The second question is 

whether the SCI is greater than 0, which qualitatively suggests that soil organic carbon levels 

will not be depleted for a given scenario.  

As currently implemented, the tools require direct user interaction for each simulation 

scenario, thus limiting their application to a detailed scenario assessment. Scenario 

assessment is a time consuming task in which data from one or more databases is formatted 

as input for one model, and then the output is combined with other data to become input for 

the other models. One way to address this concern is through an integrated modeling 

approach that takes advantage of the simulation capabilities of process-based environmental 

models and implements them within a modeling framework that facilitates hands-free model 

execution. This approach was used in a study by Muth and Bryden (2012) that investigated 

residue removal for the state of Iowa considering wind and water induced erosion, and soil 

organic carbon as potential limiting factors. This study was performed using an integrated 

modeling toolkit that coupled the RUSLE2, WEPS, and SCI models with the SSURGO, 

CLIGEN (USDA-ARS, 2009), WINDGEN (Wagner, 1992), and NRCS management 

practice (USDA-NRCS, 2011a) databases. Figure 4.1 shows the framework for this 

integrated modeling toolkit. This assessment determined that under current crop rotations, 
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grain yields, and tillage management practices, nearly 26.5 million metric tons of agricultural 

residue could be sustainably removed in Iowa. The integrated modeling toolkit developed 

used political boundaries to specify the location and spatial scale for a particular assessment, 

and then constructed the land management practices (i.e., crop rotation, tillage, and residue 

removal method) to be investigated. This assessment modeled sustainable agricultural 

residue removal at the SSURGO soil type spatial scale using representative slopes for each 

soil, and used county average crop yield and climate data. 

 

Figure 4.1. Integrated residue removal modeling framework. 

None of the current modeling approaches supports analysis of the impact of sub-field 

scale variability on sustainable residue removal. However, the high fidelity spatial data 

necessary to perform sub-field scale analyses are becoming increasingly available. The high 

fidelity spatial data available for these analyses include crop yield data from combine 
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harvesters and high resolution digital elevation models (DEMs) describing surface 

topography.  

4.2.1 High Fidelity Spatial Data 

The emergence of GPS technologies and precision agriculture concepts in the 1990s 

resulted in a number of techniques and methodologies for acquiring and using high fidelity 

spatial information in agricultural production systems (Stafford, 2000). One of the products 

of this revolution has been the commercial availability of harvester yield monitors. These 

datasets are acquired directly from harvester yield monitors in the form of ESRI
TM

 shape files 

(ESRI, 2012). These datasets provide significant detail at a sub-field scale. For example, a 

typical ESRI
TM

 shape file can contain over 400 yield measurements per hectare, and point-to-

point yield across the field may vary by a factor of more than 10.  

Surface slope impacts the spatial variability of several important agricultural 

productivity characteristics including soil water (Moore et al., 1988; Tomer et al., 1994; 

Western et al., 1999), agronomic variables (Moore et al., 1993; Bell et al., 1994; Odeh et al., 

1994; Florinsky et al., 2002) and crop yields (Yang et al., 1998; Kravchenko and Bullock, 

2000; Kaspar et al., 2003; Green and Erskine, 2004). High fidelity surface topology is 

available in the form of DEMs. Several approaches to building DEMs have been developed 

for agricultural lands. These include the use of U.S. Geological Survey (USGS) produced 

national datasets (Dosskey et al., 2005; Thompson et al., 2001) and more recently the use of 

light detection and ranging (LiDAR) through airborne laser scanning (Vitharana et al., 2008; 

McKinion et al., 2010). Several states, including Iowa, have worked toward LiDAR mapping 

of the entire state. In Iowa this effort is moving forward through the GeoTREE LiDAR 
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mapping project (GeoTREE, 2011). LiDAR mapping is the highest fidelity surface slope data 

currently available and provides a more accurate representation of relatively low slope 

agricultural land than the USGS produced DEMs (USGS, 2010). Based on this, LiDAR data 

assembled through the GeoTREE project are utilized in the work presented here.  

Soil characteristics such as organic matter and sand fraction in the topsoil horizon have 

significant spatial variability and can impact crop yields and availability of agricultural 

residue for removal. The SSURGO database provided by NRCS is available through several 

web-based access points (USDA-NRCS, 2011c). Soil characteristic data in SSURGO are 

represented at approximately a 10–100 m scale.  

4.3 THE INTEGRATED MODELING PROCESS AT THE SUB-FIELD SCALE 

Noting the variability of crop yields reported by precision harvesting, the variability of 

slope, and the variability of soil characteristics across individual fields, it is expected that 

there is also significant sub-field variability in sustainable agricultural residue removal rates. 

This paper develops an integrated model for sub-field variability of sustainable agricultural 

residue removal. This model includes the current modeling tools (i.e., RUSLE2, WEPS, and 

SCI), the existing data sources (i.e., SSURGO soils, CLIGEN, WINDGEN, and NRCS 

managements), and the available high fidelity spatial information (i.e., LiDAR slope and crop 

yield monitor output). The basic modeling process remains the same as earlier investigations 

of sustainable agricultural residue removal. The difference is that instead of modeling based 

on average or representative values for crop yields, soil characteristics, and slope for a field, 

county, or larger area, the modeling inputs are based on the same spatial scale as the 

precision farming data available. There are three challenges for developing an integrated 
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model for sub-field variability of sustainable agricultural residue removal—the 

computational challenge of iteratively computing with 400 or more spatial points per hectare, 

the inclusion of geoprocessing tools, and the integration of data from different spatial scales. 

The starting place for the sub-field model developed here is the earlier integrated model 

developed by Muth and Bryden (2012). The model was built using the VE-Suite integration 

framework (McCorkle and Bryden, 2007), which enables extension and updating of the 

models, databases, and framework as needed without revision of the existing components. 

Figure 4.2 shows the dataflow within the sub-field integrated model. As shown, the 

computational challenge of iteratively computing sustainable residue removal is handled by 

updating the scheduling algorithm. Two iterative loops are used. The first assembles 

databases with all needed information for each crop yield data point input as an ESRI 

shapefile (ESRI 1998). Following completion of this task, the second loop uses the data and 

RUSLE2, WEPS, and SCI models to simulate the environmental processes for each spatial 

location and management scenario of interest. For this study about 1,200 model executions 

per hectare (400 spatial elements, 1 management scenario, 3 model executions [RUSLE2, 

WEPS, SCI] per spatial element) are required. Upon completion of the scenario runs, the 

model results are provided back to the user through an SQLite database that includes 

references to the original yield data point shapefile. The results are formatted for simple 

interaction through standard mapping and visualization tools. The database of results is also 

equipped with a set of queries that provide the user with the model results in numeric form. 
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Fig. 4.2. The sub-field scale modeling process. 

The geoprocessing tool used in this project is ESRITM ArcGIS 10. ESRITM ArcGIS 10 

was chosen because it has automated and commercially supported geoprocessing algorithms 

to perform the functions required for data processing in this study. An SQLite database 

structure is integrated into the model to provide management of the high fidelity yield and 

topography datasets. The SQLite databases contain the necessary data for the soil, climate, 

and management data modules to assemble and organize the model input data. The 

computational scheduling algorithm packages the information and calls the models as needed. 

The resulting data are then accessible via an SQLite database.  
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Assembly of the needed data requires resolving information at different spatial scales 

between the various databases. RUSLE2 has been developed with the base computation unit 

as a single overland flow path along a hill slope profile. For a particular field a number of 

overland flow paths may exist. For conservation planning a particular overland flow path is 

selected to represent a field, and a management practice is selected that controls erosion 

adequately for that flow path profile. The conservation management planning application of 

RUSLE2 requires selection of a representative soil, slope, slope length, and yield that are 

considered constant for the field. To use RUSLE2 at the sub-field scale, the assumption is 

made that the soil, slope, and yield characteristics at each spatial element provide the 

representative overland flow path for the field. In earlier studies, the representative values 

used were based on the primary factors of concern at a local scale. These factors were then 

used to create a representative area weighted average applicable at a larger scale. In this 

study those primary factors are used directly at a local scale and then aggregated. This is a 

reasonable approach but must be applied with care. Each spatial element does not exist as an 

independent entity but rather is influenced by its neighboring elements. Even so, significant 

insight can be gained by applying RUSLE2, WEPS, and SCI at a spatial element basis. A 

similar assumption is made for the WEPS model. WEPS models a three-dimensional 

simulation region representing a field or small set of adjacent fields. Using WEPS for 

conservation planning also requires the selection of a representative soil, slope, and yield. 

The assumption made to use WEPS in the sub-field scale integrated model is that the soil, 

slope, and yield characteristics for a spatial element in question are representative for a field 

scale simulation region. The SCI is modeled for each spatial element by using the SCI sub-
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factors calculated by RUSLE2 and WEPS using the assumptions as stated. The specific 

spatial details of each database are as follows: 

1. Yield data is input directly as received from the harvester output. The crop yield 

datasets represent the base spatial discretization for the sub-field scale integrated 

model. Each yield data point represents a spatial element at the meter scale. 

Ground speed of harvesting equipment, variability in surface slope, and yield 

variability have each been found to create error in yield monitor measurements 

(Loghavi et al., 2008; Fulton et al., 2009; Sudduth and Drummond, 2007). 

Although tools have been investigated to help reduce these errors, there is no 

current commercial standard for dealing with potential errors. The yield monitor 

data for the fields investigated in this study were compared to characteristics of 

the fields such as soil carbon and slope that provide insight into potential 

productivity, and the yields correlated well with expectations. Based on this, the 

high fidelity yield data used here is as-recieved from the harvester yield monitors. 

2. The LiDAR DEM is intersected with the discretized spatial elements from the 

yield data. The LiDAR data are also at the meter scale. After intersection 

geoprocessing, each yield database record is appended with slope and slope length 

data. The GeoTREE LiDAR tool (GeoTREE, 2011) is used in the modeling 

process to provide the LiDAR data associated with the spatial extent of the high 

fidelity yield data. Within the geoprocessing tool the LiDAR data are used to 

create an elevation raster for the field(s) being investigated. A slope function in 

ArcGIS 10 Spatial Analyst is then used to generate a surface slope grid from the 
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elevation raster. The slope function calculates the maximum rate of change 

between each elevation cell and its neighbors and assigns that value to each cell 

within the DEM raster. After the slope grid is built, the high fidelity spatial 

elements are intersected with the grid.  

3. The SSURGO soil database provides soil characteristic data at the 10–100 meter 

scale. SSURGO data are intersected with the discretized yield spatial elements 

and each yield element using ArcGIS 10. Each yield data point is associated with 

a SSURGO soil type and inherits the characteristics of that soil.  

4. Climate data are provided to the integrated model at the county scale (kilometer 

scale) and are assumed constant across the spatial elements for an individual field. 

The centroid latitude and longitude for a given field is used to acquire climate 

data, and each yield spatial element uses the same climate data. 

5. Management practice options are chosen by the user. Management data is a field 

scale characteristic and is taken as constant across the spatial elements. The 

NRCS management database provides the crop rotation, tillage practice, fertilizer 

application, and harvest practice management data.  

4.3.1 Model Validation 

The initial integrated model coupling RUSLE2, WEPS, and SCI was verified to provide 

the same conclusions as the NRCS field office versions of the models as described in Muth 

and Bryden (2012). However, in the case of sub-field sustainability of agricultural residue 

removal, there are no computational or experimental results available for validation. Because 

of this, the code was validated in two ways. In the first, the high fidelity spatial databases 
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were populated with the same field average data as is used in the NRCS field office 

implementation. The code was then run and summarized at the sub-field scale, demonstrating 

that the code properly called, formatted, computed, and assembled the data needed. In each 

case the integrated sub-field model provided the same conclusions as the standard model use 

cases. In the second way, the code was used to analyze three fields, and the results were 

examined for reasonableness and to ensure the results could be explained. This is discussed 

further in Section 4.  

4.4 RESULTS 

Three representative fields in Iowa were chosen to examine the impact of sub-field scale 

variability on sustainable agricultural residue removal. Each of these fields was assessed 

using NRCS conservation management planning guidelines (USDA-NRCS Iowa, 2008) 

assuming the commercially available residue removal operations of rake and bale. Then for 

each field the removal scenario was evaluated using the sub-field scale integrated model to 

investigate the sustainability of rake and bale removal at a sub-field scale. The three fields 

examined are 

1. A 57 ha field located in Cerro Gordo County in north central Iowa with 

significant diversity in soil properties, surface slope, and crop yield. This field has 

been in a continuous corn rotation, but is transitioning to a corn-soybean rotation. 

Tillage management practices for this field are modeled as reduced tillage.  

2. A 19 ha field in Iowa County in east central Iowa with uniform soil and surface 

slope, but diverse crop yield. This field is managed in a continuous corn crop 

rotation and is modeled assuming reduced tillage practices. 
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3. A 77 ha field also in Iowa County with moderate soil diversity, surface slope, and 

crop yield. This field is managed in a continuous corn rotation and has been 

modeled assuming conventional tillage practices. 

These fields were chosen because existing relationships with the growers managing 

these fields provided access to high fidelity crop yield datasets, the location of the fields in 

Iowa ensures access to LiDAR surface topography data, and they provide a range of sub-field 

scale variability. Field 1 has highly variable soil and slope characteristics. Field 2 has 

uniform soils and slope but variability in crop yield. The characteristics of Field 3 have more 

moderate variability. 

4.4.1 Conservation Management Planning Results 

NRCS conservation management planning guidelines (USDA-NRCS Iowa, 2008) were 

used to evaluate residue removal potential for each of the three fields. Following NRCS 

practice, the representative soil for each field was selected by determining which SSURGO 

soil type best satisfied the dominant critical soil area criteria. Table 4.1 provides the list of 

soils that comprise each field and the dominant critical soil type selected as representative 

based on NRCS guidelines. The representative slope was taken directly from SSURGO for 

the selected soil type. The field average crop yield was reported from the combine harvester 

yield monitor. The management practices were modeled as described earlier and listed for 

each field in Table 4.1. Table 4.2 shows the results of this assessment. Removal rates are 

reported as average annual removals. For continuous corn rotations residue removal takes 

place each year, but for corn-soybean rotations residue removal only happens during corn 

growing seasons. The NRCS representation of the rake and bale residue removal operations 

considers the standing and flattened portions of the surface residue. The rake collects a 
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portion of the flattened residue into a windrow and the bale operation collects a majority 

fraction of the windrow, thus effectively removing it from the field. As shown in Table 4.2, 

soil loss due to erosion for each field is less than the T value. For Field 1 the SCI is less than 

zero, which results in a determination that rake and bale residue removal would not be 

sustainable management in the field. For Fields 2 and 3 the SCI is greater than 0. This leads 

to the conclusion that rake and bale residue removal would be approved as sustainable by 

NRCS for Fields 2 and 3.  
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Table 4.1. List of soils and primary assumptions for each field NRCS conservation management assessment. 

Field 
List of SSURGO Soils  

(In order of area: high to low) 

Dominant 

Critical Soil 

Dominant 

Critical 

Slope 

Field 

Average 

Yield 

(Mg ha
-1

) 

Tillage 
Crop 

Rotation 

Residue 

Harvest 

Operation

s 

1 

84 Clyde silty clay loam, 0 to 2 percent slopes 

198B Floyd loam, 1 to 4 percent slopes 

173 Hoopeston fine sandy loam, 1 to 3 percent slopes 

83B Kenyon loam, 2 to 5 percent slopes 

407B Schley loam, 1 to 4 percent slopes 

175B Dickinson fine sandy loam, 2 to 5 percent 

slopes 

41B Sparta loamy fine sand, 2 to 5 percent slopes 

83B Kenyon 

loam 
4.0% 10.85 Reduced 

Corn-

Soybean 

Rake and 

Bale 

2 
688 Koszta silt loam, 0 to 2 percent slopes 

587 Chequest silty clay loam, 0 to 2 percent slopes 

688 Koszta 

silt loam 
1.0% 12.60 Reduced 

Continuous 

Corn 

Rake and 

Bale 

3 

587 Chequest silty clay loam, 0 to 2 percent slopes 

687 Watkins silt loam, 0 to 2 percent slopes 

88 Nevin silty clay loam, 0 to 2 percent slopes 

7 Wiota silty clay loam, 0 to 2 percent slopes 

133 Colo silty clay loam, 0 to 2 percent slopes 

688 Koszta silt loam, 0 to 2 percent slopes 

8B Judson silty clay loam, 2 to 5 percent slopes 

422 Amana silt loam, 0 to 2 percent slopes 

54 Zook silty clay loam, 0 to 2 percent slopes 

587 

Chequest 

silty clay 

loam 

1.0% 

 

 

 

 

 

 

 

12.40 Conventional 
Continuous 

Corn 

Rake and 

Bale 

 

 

1
4

0
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Table 4.2. Sustainability of rake and bale removal evaluated under NRCS conservation 

management planning guidelines. 

Field 

Residue 

Removal 

Rate 

(Mg ha
-1

) 

Water 

Erosion 

(Mg ha
-1

) 

Wind 

Erosion 

(Mg ha
-1

) 

Combined 

Erosion 

(Mg ha
-1

) 

Soil T 

Value 

(Mg ha
-1

) 

SCI 

Sustainable 

Residue 

Removal 

Practice 

1 2.68 6.50 0.03 6.53 11.21 -0.15 No 

2 6.46 2.13 0.01 2.14 11.21 0.33 Yes 

3 5.10 3.59 3.95 7.54 11.21 0.01 Yes 

4.4.2 Sub-Field Scale Data 

To examine the impact of sub-field scale variability of soil characteristics, surface 

topography, and grain yield on residue removal sustainability in each of these fields, the sub-

field integrated model used the same management practices and climate information as the 

NRCS management guidelines (USDA-NRCS, 2008). The yield, slope, and soil information 

were obtained from the high spatial fidelity crop yield, LiDAR, and SSURGO data as described 

earlier. The results of these analyses are shown in Figs. 4.3, 4.4, and 4.5 for Fields 1, 2, and 3; 

respectively. 

As shown in Table 4.1, seven different SSURGO soil types comprise Field 1. The SSURGO 

data for the organic matter and sand fraction in the top horizon are shown in Figs. 4.3a and 4.3b. 

The dominant critical soil used for the NRCS conservation management planning guidelines for 

Field 1 is SSURGO map unit 83B Kenyon loam. This soil type comprises approximately 8 ha, or 

13% of the field. The soil with the largest area in the field is SSURGO map unit 84 Clyde silty 

clay loam comprising 15 ha, or 26% of the field. This soil does not satisfy the previously 

dominant critical soil area criteria as described previously because it is the lowest slope, least 

erosive, and highest organic matter soil in the field. The next largest soil in terms of area in the 

field is map unit 198B Floyd loam which comprises about 13 ha, or 20% of the field. This soil 
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also is low slope, and has high organic matter compared to other soils in the field and 

subsequently was not selected as dominant critical. The SSURGO slope for 83B Kenyon loam is 

4.0% and is used as the representative slope for the field based on NRCS conservation 

management planning guidelines. As shown in Fig. 4.3c, there is significant variability in the 

slope of this field. Figure 4.3d shows that the corn yields on this field for the 2010 growing 

season vary from less than 4.3 Mg ha
-1

 to over 15 Mg ha
-1

. The lower yield ranges seen in Fig. 

3d can be generally associated with lower organic matter soils shown in Fig. 4.3a. A similar 

relationship is found between lower yields and higher sand fraction soils shown in Fig. 4.3b. The 

correlation between lower yields in Fig. 4.3d and higher slope areas shown in Fig. 4.3c is also 

clear. These field characteristics can each limit the sustainable residue removal and in 

combination can have a compounding effect. The conservation management planning guidelines 

concluded that the annual average removal rate would be 2.68 Mg ha
-1

 and that this removal rate 

would be unsustainable. Although there is evidence that current high yielding corn varieties have 

a higher grain to residue ratio (Wilhelm et al., 2011), in this study it is assumed, consistent with 

NRCS guidelines, that the corn grain to residue rate is 1:1. The NRCS developed rake and bale 

operation collect approximately 52% of the residue. Applying these assumptions to the crop 

yields for the spatial elements in Field 1, the removal rate ranges from 0.0–3.92 Mg ha
-1

. The 

result of this is shown in Fig. 4.3e where rake and bale residue removal is a direct reflection of 

Fig. 4.3d, which shows grain yield. Given the spatial variability in soils, slope, and yield, the key 

question is how much of this field would actually be managed sustainably under rake and bale 

removal. Figure 4.3f summarizes at a sub-field scale where rake and bale removal will be 

sustainable in Field 1 and where one or more sustainability criteria will be violated. Specifically, 

Fig. 4.3f shows where (1) SCI values are less than zero, which simulates a soil carbon issue; (2) 
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combined wind and water erosion are greater than the T-value for the soil; and (3) SCI is less 

than zero, and erosion is greater than the T-value, thus simulating that both a soil loss and a soil 

organic carbon issue exist. As shown, the primary sustainability issue for rake and bale residue 

removal in this field is soil organic carbon. This is in agreement with the sustainability analysis 

performed using NRCS conservation planning guidelines. However, it is interesting to note that 

21% of Field 1 can be managed sustainably under rake and bale removal. Soil loss from wind 

and water erosion is only an issue in Field 1 in areas with surface slopes above approximately 

3.5%, and the soil sand fraction is above 40%. This is reasonable because water erosion becomes 

a problem with increasing slope, and wind erosion will typically be greater on soils with a higher 

sand fraction. In areas of the field where erosion is a problem, soil carbon is also an issue, and 

these areas align with lower grain yields. The current NRCS practice finds that rake and bale 

residue removal operations are not sustainable for this field using the dominant critical soil area 

and slope, and the field average yield. This is not surprising because the dominant critical soil 

area selection criteria for this field result in a respresentative soil with relatively high slope and 

moderate organic matter. The largest soil in terms of area for Field 1, SSURGO map unit 84 

Clyde silty clay loam, has the most favorable characteristics for sustainable residue removal of 

all the soils comprising the field. This effect can be seen looking at Figs. 4.3a and 4.3f. The only 

areas of Field 1 where rake and bale removal is sustainable are those with levels of high soil 

organic matter. The lowest soil carbon, highest sand fraction, highest surface slope, and lowest 

grain yield are all found in the same parts of the field.  

Field 2 is comprised of two SSURGO soils, as listed in Table 4.1. Both soils have a 

representative organic matter of 3.5% (Fig. 4.4a) and a relatively low sand fraction of less than 

20% (Fig. 4.4b). Over 90% of the area in this field is less than 2.5% slope (Fig. 4.4c). The 2010 
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corn grain yield data averaged 12.6 Mg ha
-1

, but ranged from less than 4 Mg ha
-1

 to nearly 17 Mg 

ha
-1

 (Fig. 4.4d). Figure 4.4e shows the residue removed across the field spatial elements using 

the NRCS assumptions for grain to residue ratio (1:1) and rake and bale residue removal 

operations (approximately 52% removal rate). Figure 4.4f shows where rake and bale removal 

will be sustainable for Field 2 and where one or more sustainability criteria will be violated. The 

majority (89%) of Field 2 is sustainably managed under rake and bale removal. As expected, the 

uniform soil and slope characteristics of Field 2 create a scenario where grain yields are 

relatively uniform across the field. There are few areas where erosion exceeds the tolerable limits, 

and these appear in areas with higher surface slope along the edges of the field. As a result, rake 

and bale removal is generally uniform and sustainable across Field 2. The sub-field analysis does 

find some soil carbon constraints on sustainability with rake and bale removal in pockets where 

grain yields are lower. As noted earlier, there are some questions about the accuracy of yields 

monitors at this scale, and these pockets may be an artifact of the yield monitors. In addition, 

residue left on the field will be generally spread out across larger areas, and soil organic carbon 

processes are continuous across larger areas than the small pockets seen in Fig. 4.4f. One 

solution to this may be aggregating soil carbon results to a larger reporting scale (e.g., averaging 

or other aggregation techniques) than the soil erosion results. Different environmental processes 

will likely require the use of data and models at different spatial scales to accurately simulate the 

effects of residue removal. This is a topic that needs further research and consideration. 

As shown in Table 4.1, nine SSURGO soils comprise Field 3. As shown in Figs. 4.5a and 

4.5b, the organic matter of these soils ranges from 3% – 6%, and all of the soils have a relatively 

low sand fraction (less than 20%). Surface slopes in this field are generally less than 2.5% with 

small regions near the field edge having slopes near 8% (Fig. 4.5c). The average corn grain yield 
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in 2010 was 12.4 Mg ha
-1

. Yields ranged from less than 3 Mg ha
-1

 to more than 15 Mg ha
-1

 (Fig. 

4.5d). As noted earlier Field 3 is managed under conventional tillage. Residue removal on 

conventionally tilled land has typically been considered not to be environmentally viable because 

of compounding negative soil erosion and soil carbon impacts caused by invasive tillage 

practices (Nelson, 2002; Nelson et al., 2004; Perlack et al., 2005). In spite of this assumption, the 

NRCS conservation management planning guidelines indicate that rake and bale removal for 

Field 3 would be sustainable. Figure 4.5e shows the residue removed across the field spatial 

elements using NRCS assumptions for grain to residue ratio (1:1) and rake and bale residue 

removal operations (approximately 52% removal rate). Figure 4.5f shows where rake and bale 

removal will be sustainable for Field 3 and where one or more sustainability criteria will be 

violated. Despite being managed under conventional tillage, sub-field scale analysis indicates 

62% of Field 3 is sustainable with rake and bale removal. In contrast to Fields 1 and 2, erosion is 

a significant constraint for Field 3 (Fig. 4.5f). Considering that Field 3 has relatively low slopes, 

this is due to the use of conventional tillage practices. Similarly, to Field 1, it is surprising that 

current NRCS practice finds that rake and bale residue removal operations are sustainable. In 

contrast to Field 1, in Field 3 the difference in the models arises not because of the representative 

soil assumption, but rather because of the field average yield assumption. The representative soil 

for Field 3 is SSURGO map unit 587 Chequest silty clay loam, which comprises nearly 37% of 

the field area. The spatial extent of the 587 Chequest silty clay loam in this field can be seen in 

Fig. 4.5b in those areas with the highest sand fraction. The field average grain yield is 12.40 Mg 

ha
-1

, and the NRCS guidelines using that yield indicate sustainable rake and bale operations. 

However, the sub-field average yield for the areas of 587 Chequest silty clay loam in this field is 
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8.4 Mg ha
-1

. This mismatch between average grain yield and representative soil type results in 

nearly 40% of the field not meeting one or more sustainability criteria. 

 

Figure 4.3. Residue removal results, key soil properties, and crop yield for Field 1. 
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Figure 4.4. Residue removal results, key soil properties, and crop yield for Field 2. 
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Figure 4.5. Residue removal results, key soil properties, and crop yield for Field 3. 

4.5 SUMMARY 

Tables 4.3 and 4.4 summarize the results from comparing the NRCS conservation 

management planning guidelines and the sub-field scale analysis of sustainable agricultural 

residue removal for the fields investigated in this study. Each of the three fields raises different 

issues when the sub-field scale analysis is compared with the conservation management planning 

guidelines. As shown in Table 4.3 using NRCS conservation management planning guidelines, 
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in Field 1 rake and bale removal would provide an annual average 152 Mg of corn stover; 

however, none of this would be sustainably removed. In contrast, the sub-field analysis of Field 1 

shows that 23% of this potentially available residue would be removed sustainably and Table 4.4 

shows that 21% of the area in Field 1 would be managed sustainably. Field 1 presents a situation 

where current NRCS guidelines for selecting representative soil and slope characteristics protect 

the majority of the field from unsustainable practices, but the assumptions do leave residue in the 

field that could have been removed sustainably and may provide an opportunity to economically 

harvest biomass for bioenergy production.  

Table 4.3. Available agricultural residue using rake and bale collection for each field. 

Field 

Total Residue 

Available if 

Sustainability is not 

Considered 

(Mg) 

Sustainable Residue 

Available Based on 

NRCS Guidelines 

(Mg) 

 Sustainable Residue 

Available Based on 

Sub-field Analysis 

(Mg) 

Fraction of Total 

Residue Available 

for Sustainable 

Removal Based on 

Sub-field Analysis  

1 152 0 35 23% 

2 119 119 106 89% 

3 387 387 279 72% 

Field 2 represents a situation where conservation management planning guidelines and the 

sub-field analysis of sustainable agricultural residue removal generally agree. Field 2 has much 

less variability in soil and slope. As shown in Table 4.3, the rake and bale operations would 

remove 119 Mg of residue. Sub-field analysis indicates that 89% would be removed sustainably 

and Table 4.4 shows that 83% of the 19 ha in Field 2 would be being managed sustainably. The 

sub-field analysis shows pockets where soil carbon is an issue. However, organic carbon 

dynamics in the soil are understood to work over more continuous extents than these pockets. 

This raises questions about how to apply and report the sub-field scale model results for the SCI. 
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In Field 3 the assumption of a field average grain yield is inconsistent with the sub-field 

scale data for significant portions of the field. As discussed previously the assumption in this 

analysis is the the grain to residue ratio for corn is 1:1. As a result, although the NRCS guidelines 

indicate that rake and bale residue removal would be sustainable, the sub-field analysis shown in 

Table 4.3 for Field 3 finds that 72% of the 387 Mg of residue would be removed sustainably and 

Table 4.4 shows that 62% of the 77 ha would be managed sustainably.  

Table 4.4. Field Area That Can Be Sustainably Managed Using Rake and Bale Collection Based 

on Sub-field Analysis. 

Field 
Total Field Area  

(ha) 

Area Managed Sustainably 

(ha)  

Fraction of total area 

sustainably managed 

1 57 12 21% 

2 19 16 83% 

3 77 48 62% 

4.6 CONCLUSIONS 

This paper develops a computational strategy to model the impact of sub-field scale 

variability on sustainable agricultural residue removal. The computational strategy integrates 

together data inputs from multiple spatial scales, geoprocessing tools to facilitate interaction with 

high fidelity sub-field scale data, and models representing soil erosion from wind and water 

forces and soil organic matter. A computational scheduling algorithm is used to support 

integration of the multiple models, databases, and other information at the sub-field scale. The 

model was then used to examine three representative fields in Iowa to examine the relationship 

between sub-field variability and the current NRCS conservation management planning 

guidelines. For Field 1 the conservation management planning guidelines found that rake and 

bale residue removal of agricultural residue is unsustainable. The sub-field analysis showed that 

these assumptions protect the majority of the field from unsustainable practices, but do 



www.manaraa.com

 

 

151 

understate residue removal potential for significant portions of the field. In Field 2 the sub-field 

analysis of the SCI was found to be sensitive to the high fidelity yield data, thus resulting in 

small pockets in which the SCI was negative. However, the soil organic carbon dynamics and the 

spread of agricultural residue occur on larger spatial scales. Based on this, a validated 

methodology for applying the SCI at sub-field scale needs to be developed. Field 3 was found to 

have significant areas in which the sub-field analysis and the NRCS conservation management 

planning guidelines disagreed as to the sustainability of rake and bale residue removal. Based on 

these observations, additional research is needed to investigate the following issues and 

questions: 

1. The current conservation management planning approach using representative soil, 

representative slopes, and field average yields may lead to unsustainable residue 

removal decisions or may understate the residue removal potential of a field. For 

Field 1 the NRCS guidelines found rake and bale removal to be unsustainable 

whereas the sub-field analysis found that over 20% of the field could have residue 

removed sustainably using conventional rake and bale technologies. For Fields 2 and 

3 the conservation management planning approach provided recommendations that 

rake and bale residue removal methods could be sustainably implemented. For Field 3 

nearly 40% of the field would have unsustainable residue removal under conventional 

removal methods. Further research is needed to develop new planning algorithms that 

can utilize the increasing amounts of high fidelity data that are becoming available.  

2. Additional work needs to be done to establish how to apply the sub-field scale model 

results. As highlighted by the small pockets where soil carbon issues are identified in 

Field 2, the spatial scale of precision farming and the spatial scale of soil carbon 
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dynamics are not directly comparable. Validated modeling algorithms need to be 

developed that address this issue.  

In addition, the application of the sub-field analysis of sustainable residue removal may 

provide motivation for the development of variable rate residue removal technologies. In each of 

the fields examined, there are areas where residue is required for soil health functions and cannot 

be harvested using conventional residue removal systems. However, the sub-field model 

developed in this work could be used to quantify the potential benefits of variable removal 

technologies and provide justification for the development and deployment of variable rate 

residue removal technologies. 
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CHAPTER 5. AN INVESTIGATION OF SUSTAINABLE VARIABLE RATE 

AGRICULTURAL RESIDUE REMOVAL 
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ABSTRACT 

Agricultural residues have near-term potential as a feedstock for bioenergy production, but 

removal of agricultural residues must be managed carefully to maintain soil health and 

productivity. Recent studies have shown that sub-field scale variability in soil characteristics, 

surface slope, and grain yield can significantly impact the amount of residue that can be 

sustainably removed at different areas within a single field. This study examines the potential of 

a conceptual variable rate residue removal equipment configuration capable of on-the-fly residue 

removal rate adjustments from 0%–80% by modeling residue removal at thirteen removal rate 

levels: 0% and 25%–80% at 5% increments. The variable rate residue removal operations are 

simulated with a sub-field scale integrated modeling framework that evaluates residue removal 

sustainability considering wind erosion, water erosion, and soil carbon constraints. Three Iowa 

fields with diverse soil, slope, and grain yield characteristics were examined and the sustainable 

removal rate of agricultural residue using the conceptual variable rate removal equipment was 

2.35, 7.69, and 5.62 Mg ha
-1

. In contrast, the sustainable removal rates using rake and bale 

removal for the entire field were 0.0, 6.40, and 5.06, respectively. In addition, the variable rate 

residue removal sustainably managed 100% of the land area in all three fields. In contrast, Field 

1 could not be sustainably managed using rake and removal, and 83% of land area of Field 2 and 
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62% of the land area of Field 3 were managed sustainably using rake and bale removal for the 

entire field.  

5.1 INTRODUCTION 

Over the past three decades, significant discussion and debate have taken place regarding the 

opportunity for sustainable removal of agricultural residues for bioenergy production. The latest 

motivation for investigating agricultural residue removal potential comes from the Energy 

Independence and Security Act of 2007, which requires annual U.S. biofuel production to 

increase to more than 136 billion liters by 2022. Non-cornstarch feedstock such as agricultural 

residues must comprise nearly 80 billion liters of this production. If a production rate of 330 

liters of biofuel per metric ton of biomass feedstock is assumed (Aden et al., 2002; Phillips et al., 

2011), meeting this target will require the development and utilization of over 240 million metric 

tons of non-cornstarch biomass resources annually. Many in the bioenergy community consider 

sustainable agricultural residues to be the cellulosic resource with the greatest near-term potential 

for bioenergy production (Perlack et al., 2005; Aden et al., 2002). Agricultural residues provide a 

number of functions within the agronomic system that are critical to maintaining soil health 

(Karlen et al., 2003; Johnson et al., 2006; Wilhelm et al., 2007; Clay et al, 2010), and excessive 

residue removal can negatively impact the long term productivity of soil resources (Wilhelm et 

al., 2010; Sheehan et al., 2004; Mann et al., 2002; Khan et al., 2007). 

A number of previous efforts have investigated the issue of sustainable residue removal 

across a wide range of spatial scales and analysis approaches. These have identified that 

significant amounts of agricultural residues are potentially available for bioenergy production. 

An early study performed by Larson (1979) examined agricultural residue removal potential 

across the Corn Belt, Great Plains, and the Southeast of the United States. Because of data and 
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computational limitations, this study used area-weighted averages for soil characteristics, climate 

conditions, and crop yields across the U.S. Department of Agriculture (USDA) identified Major 

Land Resource Areas (MLRAs) (USDA-NRCS, 2012a) for the regions investigated. The scale of 

MLRAs is typically groups of 5–20 counties. To do this, Larson aggregated the soils data 

available to create a composite set of erodibility factors representing each MLRA and estimated 

that nearly 49 million metric tons of agricultural residues could be sustainably harvested over the 

regions assessed at that time. After an extended period in the 1980s and 1990s during which 

agricultural residue removal received limited research focus, Nelson (2002) used the Soil Survey 

Geographic (SSURGO) Database (USDA-NRCS, 2011c), an open access national soil survey 

database provided by the USDA Natural Resources Conservation Service (NRCS) to investigate 

residue removal potential for 37 states from the Great Plains to the East Coast. Nelson developed 

a methodology using “county average, hectare-weighted fields.” This methodology aggregated 

the range of soil characteristics for each county and concluded at that time the 37 states 

investigated could annually produce approximately 58 million metric tons of residue sustainably. 

Continued progress with data management and environmental modeling tools enabled Nelson et 

al. (2004) to adapt the 2002 Nelson study to (1) include additional crop rotations and (2) 

calculate erosion at the SSURGO soil type spatial scale (10 m–100 m). Based on this, Nelson et 

al. (2004) concluded that 30.2 million dry metric tons of corn (Zea mays L.) stover and 13.4 

million dry metric tons of wheat (Triticum aestivum L.) straw were available for removal 

annually across the 10 states investigated over the five-year span from 1997–2001. In 2007, 

Graham et al. utilized the methodology developed by Nelson et al. (2004) to investigate corn 

stover residue removal across the United States. The 2007 study by Graham et al. used the same 

spatial scale, or scenario tools, as the 2004 study by Nelson et al., and included an additional 
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constraint of soil moisture. Graham et al. (2007) also found that soil organic carbon was an 

important consideration, but noted the computational limitations to including it. They stated “in 

its current form with manual input, the Soil Conditioning Index is not practical to run for the 

thousands of corn production situations that occur in the USA” (p. 1). The study concluded that 

58.3 million metric tons of stover could be sustainably removed annually. 

Cruse and Herndl (2009) noted that developing a sustainable and profitable cellulosic 

biofuels industry using corn stover will require the ability to determine spatially variable 

sustainable removal rates and harvest technology that can remove residue at these rates. 

Significant work has been done looking at both single-pass and multi-pass residue removal 

system configurations and quantifying the generalized removal potential of the different systems. 

These systems have generally not been capable of variable rate removal. Single pass 

configurations have much more potential for on-the-fly adjustments of removal rate than 

multipass configurations, and some investigations of variable rate single pass configurations 

have been performed. Karkee et al. (2010) presented a study in which sub-field removal 

adjustments were made using the single pass equipment configuration used by Hoskinson et al. 

(2007). Similar to variable rate seeding (Fountas et al., 2006; Bullock et al., 1998), variable rate 

fertilizer application (Hong et al., 2006; Koch et al., 2004), and variable rate chemical 

application (Anglund and Ayers, 2003), the availability of high spatial fidelity agriculture 

datasets provides significant motivation for developing variable residue removal equipment. 

Based on single pass technologies that include removal rates from 25% (Zych, 2008) to more 

than 80% (Hoskinson et al., 2007), the study presented here assumes an adjustable on-the-fly 

removal rate of 25%–80% in 5% increments, with a 0% removal option. 
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Muth et al. (2012) developed an integrated modeling approach that utilizes high fidelity 

agricultural datasets to examine the variability of sub-field agricultural residue removal. This 

integrated model coupled the Revised Universal Soil Loss Equation, Version 2 (RUSLE2) 

USDA-NRCS, 2011a), Wind Erosion Prediction System (WEPS) (USDA-ARS and NRCS, 

2008), and Soil Conditioning Index (SCI) (USDA-NRCS, 2012b) models with a multi-scale set 

of databases describing crop yield, surface topography, soil characteristics, climate, and land 

management data. The sustainability of rake and bale residue removal of three fields in Iowa was 

examined using the current NRCS conservation management planning guidelines (USDA-NRCS, 

2011b) and the sub-field modeling approach. The NRCS conservation management planning 

analysis concluded that rake and bale removal would be sustainable for two of the three fields. 

The sub-field model found that there was significant variability in the sustainability of rake and 

bale removal across individual fields. As a consequence, the study concluded that the dominant 

critical soil and slope, and field average yield assumptions used in the NRCS conservation 

management planning may lead to unsustainable residue removal decisions for portions of some 

fields and reduced residue removal in other fields.  

One potential approach for dealing with sub-field scale variability in sustainable residue 

removal rates is to use equipment that can perform controlled, on-the-fly removal rate 

adjustments. Although it is becoming more broadly recognized that removal rates will vary from 

field to field, and within fields (Cruse and Herndl, 2009), limited work to date has focused on 

identifying the impact and value of equipment with this capability. This paper investigates 

sustainable variable rate residue removal at the sub-field scale for three representative Iowa 

fields. Specifically, the impact of a conceptual single-pass residue harvester configuration that 

can make on-the-fly removal rate adjustments is investigated using the sub-field scale model 
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developed by Muth et al. (2012). The results of variable rate harvest using this conceptual 

machine are compared with sustainable rake and bale removal of agricultural residue using 

NRCS planning guidelines. 

Table 5.1. List of soils and primary assumptions for each field NRCS conservation management 

assessment. 

Field 

List of SSURGO Soils  

(In order of area: high to low) 

Dominant 

Critical Soil 

Dominant 

Critical 

Slope 

Field 

Average 

Yield  

(Mg ha
-1

) 

Residue 

Harvest 

Operation  

1 

84 Clyde silty clay loam, 0 to 2 percent slopes 

198B Floyd loam, 1 to 4 percent slopes 

173 Hoopeston fine sandy loam, 1 to 3 percent 

slopes 

83B Kenyon loam, 2 to 5 percent slopes 

407B Schley loam, 1 to 4 percent slopes 

175B Dickinson fine sandy loam, 2 to 5 percent 

slopes 

41B Sparta loamy fine sand, 2 to 5 percent 

slopes 

83B Kenyon 

loam 
4.0% 10.85 

Rake and 

Bale 

2 

688 Koszta silt loam, 0 to 2 percent slopes 

587 Chequest silty clay loam, 0 to 2 percent 

slopes 

688 Koszta silt 

loam 
1.0% 12.60 

Rake and 

Bale 

3 

587 Chequest silty clay loam, 0 to 2 percent 

slopes 

687 Watkins silt loam, 0 to 2 percent slopes 

88 Nevin silty clay loam, 0 to 2 percent slopes 

7 Wiota silty clay loam, 0 to 2 percent slopes 

133 Colo silty clay loam, 0 to 2 percent slopes 

688 Koszta silt loam, 0 to 2 percent slopes 

8B Judson silty clay loam, 2 to 5 percent slopes 

422 Amana silt loam, 0 to 2 percent slopes 

54 Zook silty clay loam, 0 to 2 percent slopes 

587 Chequest 

silty clay loam 
1.0% 12.40 

Rake and 

Bale 

 

Table 5.2. Field descriptions for the three fields. 

Field Location Area (ha) Crop Rotation Tillage 

1 
Cerro Gordo 

County, Iowa 
57 Corn-Soybean Reduced 

2 Iowa County, Iowa 19 Continuous Corn Reduced 

3 Iowa County, Iowa 77 Continuous Corn Conventional 
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5.2 BACKGROUND 

In this study the integrated model developed by Muth et al. (2012) to support sustainable 

sub-field scale residue removal assessments is used to examine sustainable variable rate 

agricultural residue removal. Specifically, agricultural residue removal based on NRCS 

guidelines is contrasted with variable rate residue removal in the same three Iowa fields and 

using the same management practices evaluated by Muth et al. (2012). These fields are described 

in Tables 5.1 and 5.2. These three fields were chosen for this series of studies because of the 

availability of high fidelity sub-field scale data and because they exhibit a wide range of sub-

field scale variability of soil conditions, surface topography, and yield. This earlier study 

examined how sub-field scale variability in soil characteristics, surface slope, and grain yield 

impacted the sustainability of rake and bale residue removal within the three fields. Two of the 

fields are in a continuous corn crop rotation, and the other is in a corn-soybean (Glycine max (L.) 

Merr.) rotation. The list of operations used to describe these two rotations is shown in Table 5.3. 

These operation lists are consistent with the NRCS standards in the region where all three of the 

fields are located. As shown in Table 5.3, two of the fields are modeled with reduced tillage 

practices and one is modeled with conventional tillage practices. The SSURGO soils that make 

up each field are shown in Table 5.1. The model assumptions and configurations for each tillage 

regime are consistent with the tillage definitions provided by the Conservation Technology 

Information Center (CTIC) (CTIC, 2012). Conventional tillage includes full width tillage passes 

and results in less than 15% of the residue remaining on the soil surface after planting the next 

crop. Reduced tillage again involves full width tillage passes, but leaves up to 30% of the residue 

on the soil surface after planting.  
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The sub-field model utilizes high fidelity input data sets providing soil characteristics, 

surface slope, and grain yield. Crop yield data are supplied from the combine harvester yield 

monitor systems. Each crop yield data point is a base spatial unit for the sub-field scale 

integrated model, and each of these points represents a spatial element at the 1 m scale. Surface 

topography data are supplied by light detection and ranging (LiDAR) through airborne laser 

scanning (Vitharana et al., 2008; McKinion et al., 2010). LiDAR data for the state of Iowa is 

provided by the GeoTREE LiDAR mapping project and managed in an SQLite database within 

the integrated model (GeoTREE, 2011). The LiDAR data is also provided at the 1 m scale. Soil 

characteristics data is provided by the Soil Survey Geographic (SSURGO) Database (USDA-

NRCS, 2011c), an open access national soil survey database provided by NRCS. SSURGO data 

is at the 10–100 m scale. Climate data is represented in the integrated model at the county scale 

(approximately 10,000–100,000 m) and is provided by three sources: NRCS managed RUSLE2 

climates, CLIGEN, and WINDGEN. For an individual field, the centroid latitude and longitude 

is used to establish the climate input data. The RUSLE2 climate data is pulled in for the county 

where the centroid is located. The CLIGEN and WINDGEN databases use an interpolation 

algorithm to calculate climate data based on triangulation of nearby weather stations. Land 

management data is provided by an NRCS-managed database, which is housed in the integrated 

model as an XML data structure. Management data is a field scale characteristic.  

The variable rate removal operations were modeled as a direct bale unit where a large square 

baler is pulled and powered by the combine harvester and receives residue material directly from 

the separations units within the harvester. This was modeled assuming machine adjustments 

through the header and the separations units. For removal rates from 25%–50%, the header 

height was assumed to be standard for current commercial harvest operations and a control 
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system within the harvester separation unit was assumed to adjust the quantity of material 

entering the baler. For removal rates from 50%–80%, the header height was assumed to be 

adjusted lower, moving more of the plant residue through the harvester and then to the baler. The 

standard corn header was exchanged for a row crop header, and machine performance impacts of 

this configuration were not considered in this study. Based on this, the direct bale residue harvest 

operation was modeled from 25%–80% removal at 5% increments. Including the potential for no 

removal, this creates thirteen potential removal rates. 

The integrated model was run at each yield data point within a field for the complete set of 

crop rotation/residue removal combinations. The residue removal combinations as described 

previously are 25%–80% removal at 5% increments. This schema creates 13 residue removal 

rate bins. Sustainable removal rates from 0%–25% are modeled and binned at 0% removal; 

25%–29.9% are binned at 25% removal with that schema continuing to 79.9% removal. 

Sustainable removals from 80%–100% are binned at 80% removal. Residue harvest at each yield 

point was evaluated for sustainability, thus requiring total wind and water induced soil erosion to 

be less than or equal to the tolerable soil loss level identified by NRCS for the particular soil and 

the SCI to be greater than or equal to zero. The highest removal rate satisfying these criteria was 

established as the removal rate for each yield point with the assumption that the harvesting 

equipment could make these adjustments on the fly. Executing this analysis resulted in 

approximately 15,600 model executions per hectare (400 spatial elements, 13 residue removal 

scenarios, and 3 model executions per spatial element).  
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Table 5.3. Continuous corn and corn-soybean crop rotations modeled in this study with reduced 

tillage assumptions. 

Continuous Corn Corn/Soybean 

 11/1 Year 1 Chisel Plow  4/20 Year 1  Fertilizer Application 

 4/25 Year 2 Fertilizer Application  5/1 Year 1  Field Cultivation 

 5/1 Year 2 Field Cultivation  5/1 Year 1  Plant Corn 

 5/1 Year 2 Plant Corn  10/11 Year 1  Harvest Corn Grain DB 

Residue 

 10/11 Year 2 Harvest Corn Grain DB 

Residue 

 11/1 Year 1  Chisel Plow 

   5/15 Year 2  Plant Soybeans 

   10/1 Year 2  Harvest Soybeans 
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5.3 RESULTS 

The sub-field scale model scenarios discussed in Section 3 were run for each of the three 

fields and the results are shown in Figs. 5.1–5.3. As shown in Fig. 5.1, Field 1 has diverse soil 

characteristics with soil organic matter ranging from 1.5% to 7.5% and sand fractions ranging 

from 17.8% to 87.0% in the top horizon of the soil. Areas of low organic matter and high sand 

fraction correlate with the higher surface slopes shown in Fig. 5.1c. These field characteristics 

have a negative impact on grain yield, as shown in Fig. 5.1d. Muth et al. (2012) determined that 

only 21% of Field 1 would be managed sustainably with rake and bale residue removal due to 

the significant diversity in soil and surface slope characteristics and because the NRCS 

guidelines find that rake and bale residue removal is not sustainable for this field. Figure 5.1e 

shows the sustainable residue removal fraction across Field 1 for the land management 

assumptions as listed in Table 5.2. Figure 5.1f shows sustainable residue removal ranging from 0 

to over 5 Mg ha
-1

. As shown, those areas with low grain yield do not sustainably support any 

residue removal. Specifically, for grain yields below approximately 5 Mg ha
-1

 the minimum 

removal rate of 25% modeled for the conceptual variable rate removal configuration is too high 

for sustainable removal. It is also shown that sustainable removal fraction increases in areas of 

the field where soil organic matter is higher. The SSURGO soil map units shown in Fig. 5.1a are 

soil survey data, and the explicit transitions between different organic matter levels seen in Fig. 

5.1a will be continuous in the field. In the same way, the explicit transitions to higher residue 

removal rates for the variable rate harvester in Fig. 5.1e will have transitions that are more 

continuous. 
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Figure 5.1. Field 1 characteristics and variable rate removal results. 

Field 2 is managed with a continuous corn rotation and reduced tillage practices, as shown 

in Table 5.2. As shown in Fig. 5.2, this field has minimal soil and surface slope diversity. Grain 

yields are generally high in this field, and the rake and bale residue removal operations were 

found to be sustainable for 83% of Field 2 using the sub-field scale integrated model (Muth et al., 

2012). The fractional residue removal map using the conceptual variable rate residue harvester is 
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shown in Fig. 5.2e, and the sustainable residue removal rate is shown in Fig. 5.2f. Because soil 

and surface slope conditions in Field 2 are generally uniform, the residue removal rates look 

similar to the grain yield map (Fig. 5.2d). Small pockets of lower grain yields along the edges of 

and in locations within Field 2 lead to little or no residue sustainably available with the variable 

rate harvester in these areas. The majority of Field 2 can sustainably provide residue removal of 

approximately 5 Mg ha
-1

 or greater. 
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Figure 5.2. Field 2 characteristics and variable rate removal results. 
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Field 3 is modeled in a continuous corn rotation using conventional tillage practices. As 

shown in Figs. 5.3a and 5.3b, Field 3 has moderate diversity in soil characteristics compared to 

Fields 1 and 2. Surface slope in Field 3 is generally uniform and low at less than 1.5% for most 

of the field, as shown in Fig. 5.3c. Grain yield, shown in Fig. 5.3d, is highly variable in Field 3. 

Significant portions of the field had grain yields less than 4.5 Mg ha
-1

, and large areas of Field 3 

also had relatively high grain yields above 13 Mg ha
-1

. The sustainable residue removal fraction 

using the variable rate residue harvester shown in Fig. 5.3e shows that areas of high grain yield 

correlate with high removal fractions above 65%. The removal rate map in Fig. 5.3f directly 

relates to the grain yield variability in Fig. 5.3d. A significant area in Field 3 cannot have any 

residue removed sustainably, but large portions of the field can sustainably provide over 8.5 Mg 

ha
-1

 of residue.  
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Figure 5.3. Field 3 characteristics and variable rate removal results. 

Figures 5.4a through 5.4c show the mass fraction of residue removed sustainably and the 

area fraction of residue harvested by bin for each of the three fields. As shown in Fig. 5.4a, 

nearly 13% of the area in Field 1 requires a 0% removal rate to be sustainably managed. The 

45% removal rate covers the most area and provides the most residue mass for Field 1 of the 

range of removal rates. Higher removal rates provide more residues per unit area, and Fig. 5.4a 
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shows that although the 65% removal rate is only used for about 12% of the field, it provides 

nearly 20% of the total residue mass sustainably available in Field 1. The results in Fig. 5.4a 

show that in order to collect 90% of the sustainably removable residue, the variable removal rate 

harvester would need to be capable of on-the-fly rate adjustments from 40% to 65%. The 

requirements are different when considering harvester performance for sustainably managing a 

land area. In this case the variable rate harvester would need to be able to make on-the-fly 

adjustments down to 0% removal to achieve sustainable removal for 100% of the area in Field 1. 

Accounting for both maximizing residue mass collected and sustainably managing a land area 

requires a robust and dynamic variable rate residue harvester in Field 1. 

Figure 5.4b shows that lower diversity in the sub-field characteristics found in Field 2 create 

different variable rate residue harvester performance requirements than the more diverse Field 1. 

Looking at Fig. 5.4b, the 65% removal rate is used for over 40% of Field 2. When 5% removal 

rate adjustments to 60% and 70% are included, nearly 80% of Field 2 is represented. Figure 5.4b 

shows that if the harvester has the ability to adjust between 60% and 70% removal rates, over 

90% of the sustainably removable residue mass would be collected in Field 2. These results show 

that the uniform sub-field characteristics in Field 2 result in much less intense variable rate 

residue harvester performance requirements to achieve sustainable practices and maximize 

residue removed than found for Field 1. 

Over 15% of the area in Field 3 requires no residue harvest, and over 35% of the area in the 

field requires removal rates at or below 50% (Fig. 5.4c). In contrast, the majority of the 

sustainably available residue mass will be collected at removal rates at 60% or above. Field 3 

presents a scenario where on-the-fly removal rate adjustments within the variable rate harvester 
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need to cover the full range of the modeled assumptions to meet both goals of sustainably 

managing the land and maximizing sustainably removed residue mass. 

One question that arises is whether the full range of 25%–80% is needed or if a smaller 

range of residue removal would be nearly as effective. In Field 1, a variable rate harvester with 

the capability to adjust between 40%–65% residue removals would collect 91% of the 

sustainably removable residue mass. Within Field 2, the variable rate harvester would need to 

adjust between 60%–70% removal rates to collect 92% of the sustainably removable material. 

For Field 3 to achieve 90% removal of the sustainably available residue would require removal 

rate adjustments from 50%–70%. Therefore, if the variable rate harvester was able to make on-

the-fly adjustments from 40%–70% removal rates, more than 90% of the sustainably available 

residue would be removed from each of these fields. 
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Figure 5.4. Removal fraction distribution for variable rate harvest scenarios in each of the three 

fields. 
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For each of the three fields, Table 5.4 compares the variable rate residue removal scenario in 

this study to the current NRCS guidelines for sustainable rake and bale removal of the entire 

field and the selective sub-field rake and bale single rate residue removal scenario discussed in 

Muth et al. (2012). The sustainable removal rate of agricultural residue for the conceptual 

variable rate removal equipment was 2.35, 7.69, and 5.62 Mg ha
-1

 for Fields 1–3, respectively. In 

contrast, the sustainable removal rates using rake and bale removal and NRCS guidelines for the 

entire field were 0.0, 6.40, and 5.06 for Fields 1–3, respectively. In addition, the variable rate 

residue removal sustainably managed 100% of the land area in all three fields. In contrast, Field 

1 could not be sustainably managed using rake and removal, and 83% of the land area of Field 2 

and 62% of the land area of Field 3 were managed sustainably using rake and bale removal for 

the entire field. The selective rake and bale residue removal harvest of 21% of Field 1 provided 

0.62 Mg ha
-1

, and as a consequence, it is likely that this field could not be harvested sustainably 

and economically. Selective rake and bale harvest of Fields 2 and 3 managed the entire land 

sustainably but only harvested 83% and 62% of the land area, respectively, and provided lower 

residue yields (5.70 and 3.65 Mg ha
-1

, respectively) relative to current NRCS practice.  
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Table 5.4. Sustainable residue removal potential for the three fields compared to rake and bale as reported by Muth et al. (2012). 

Field 

Total Residue 

Available with 

Rake and Bale if 

Sustainability is 

not Considered 

Sustainable 

Residue Available 

with Rake and 

Bale Based on 

NRCS Guidelines 

Average Annual 

Sustainable 

Removal Rate 

with Rake and 

Bale Based on 

NRCS Guidelines 

Sustainable 

Residue Removal 

with Selective 

Rake and Bale 

(Muth et al., 

2012) 

Average Annual 

Sustainable 

Removal Rate 

with Selective 

Rake and Bale  

(Muth et al., 

2012) 

Sustainable 

Residue Removal 

with Variable 

Rate Assumptions 

Average 

Annual 

Sustainable 

Removal Rate 

with Variable 

Rate 

 Mg Mg Mg ha
-1

 Mg Mg ha
-1

 Mg Mg ha
-1

 

1 152 0 0.00 35 0.62 133 2.35 

2 119 119 6.40 106 5.70 144 7.69 

3 387 387 5.06 279 3.65 430 5.62 

1
7
7
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5.4 CONCLUSIONS 

The paper examines the potential of variable rate residue removal technology for 

increasing sustainably removable residue, and characterizes the performance of the 

conceptual variable rate harvester required to maximize sustainable removal of residue. This 

analysis was performed for three representative Iowa fields. Sub-field scale variability in soil 

characteristics, topography, and yield significantly impact sustainably available residue 

removal rates in all three fields. In each of the fields, variability in one or more of these items 

led to a wide range in sustainable residue removal in different areas of the field. For Field 1 

soil properties had a large impact on the residue availability, whereas in Fields 2 and 3 the 

sustainable residue removal rates correlated to grain yield. In each field there were areas 

where no residue was sustainably available and areas where large portions of the available 

residue could be removed sustainably.  

It was found that variable rate residue harvest technologies support the challenging goals 

of optimizing residue removal for sustainable land management and bioenergy production. 

Compared with NRCS guidelines that suggest that no residue could be sustainably removed 

in Field 1, the conceptual variable rate residue harvester modeled here would sustainably 

manage 100% of the land area while providing an average of 2.35 Mg ha
-1

 of residue for 

energy use. In Fields 2 and 3, variable rate harvest provides 1.29 and 0.56 Mg ha
-1

 more 

residues, respectively, than NRCS guidelines using rake and bale removal while sustainably 

managing 100% of the land area. This suggests that variable rate removal of agricultural 

residue could sustainably provide more agricultural residue for energy production while 

improving sustainable management of land resources. 

 

1
4
0
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CHAPTER 6.  CONCLUSIONS AND FUTURE DIRECTIONS 

This chapter presents a summary of the findings and conclusions from the research 

performed for this dissertation along with a discussion on the potential implications of these 

findings and conclusions for implementing sustainable agricultural residue removal practices 

across the nation. Also presented are future directions for this work. Specifically addressed 

are potential roles this work can have in supporting a transition toward sustainable, highly 

productive, integrated bioenergy production systems capable of meeting national bioenergy 

production goals. 

6.1 SUMMARY 

An integrated modeling strategy has been built and demonstrated for sustainable residue 

removal analyses. A framework was used to integrate multiple environmental process models 

and databases required to simulate agricultural residue removal scenarios and to assess 

sustainability for multiple potential limiting factors. The integrated modeling framework 

initially focused on utilizing NRCS developed models and databases: the RUSLE2 water 

erosion model, the WEPS wind erosion model, and the SCI soil carbon model. These choices 

were made because of the significant investments already made in developing and validating 

these models, the databases required for the models already exist, and NRCS field offices 

across the country currently use the models to implement conservation management required 

through Farm Bill legislation. The framework approach facilitates use of the models in 

executable form, which provides a number of advantages. These include leveraging the 

existing model validation efforts and allowing the seamless exchange of new or updated 

model versions. The integrated modeling strategy has been applied across multiple spatial 

scales. An initial application of the framework included an assessment of the sustainably 
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available residue for the state of Iowa. The study utilized SSURGO soil map units as the base 

spatial elements for the analysis and calculated the integrated model results for nearly five 

million scenarios. The results, which used assumptions about current land management and 

crop yield practices, showed nearly 26.5 million metric tons of agricultural residue as 

sustainably available in the state. 

The integrated modeling strategy was then applied to a sustainable agricultural residue 

removal assessment for the entire conterminous United States. This assessment builds upon 

previous large scale assessments by providing a more comprehensive spatial and temporal 

analysis for the conterminous United States that considers multiple potential environmental 

limiting factors. SSURGO soil map units represent the base spatial elements for the analysis. 

The assessment incorporated the latest advancements in land cover and land use data by 

developing and integrating a methodology using the USDA Cropland Data Layer to establish 

accurate crop rotation practices. Three tillage regimes (conventional, reduced, and no tillage) 

were run. Each of the soil type/crop rotation/tillage regime/crop yield/removal rate scenarios 

was run through the integrated model, resulting in nearly 100 million total scenarios. This 

includes yield scenarios for 2011 and 2030. The results were aggregated to county level 

projections, and they showed that in 2030 over 200 million metric tons of agricultural 

residues could be sustainably removed. If no tillage management practices are universally 

adopted, the sustainably available residue could reach nearly 300 million tons. These results 

are useful for the emerging bioenergy industry making decisions about investments from two 

perspectives. First, the county level projections can support decisions identifying regions 

where sufficient quantities of biomass can be found to support bioenergy conversion facilities. 
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Second, the raw data calculated at the SSURGO soil map unit level can help identify 

sustainable removal practices within NRCS conservation management planning guidelines.  

The integrated model was extended to use high fidelity spatial data at the sub-field scale, 

which has become readily available through precision agriculture. Specifically, 

geoprocessing tools that work with combine harvester yield monitor data, LiDAR surface 

slope data, and SSURGO soils data were used to adapt the integrated model for sub-field 

scale sustainable residue removal investigations. Sub-field scale residue removal assessments 

were performed for three representative Iowa fields. The results of the assessments show that 

variability in soil characteristics, surface slope, and grain yield can greatly impact sustainable 

residue removal within individual fields. The assessments investigated current NRCS 

conservation management planning guidelines that use dominant critical soil type selection, 

representative slope and slope length selection, and field average grain yield. The results of 

the sub-field assessments showed that these assumptions do not reflect sustainable removal 

rates for large portions of the fields. In some cases there are significant areas in a field that 

will have too much residue removed, and in others there are significant quantities of residue 

that could be sustainably removed above the recommendations. Primary conclusions of the 

sub-field assessments are that sustainable residue removal analysis must consider sub-field 

scale variability and that residue removal system configurations that can adapt to changing 

residue removal rates across a field could play an important role in maximizing the potential 

residue available while ensuring sustainable land management practices.  

The sub-field scale integrated model was then applied to the three Iowa fields to 

investigate a variable rate residue harvesting concept as a mechanism for managing sub-field 

scale variability. The modeled system was based on single pass direct bale technologies and 
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assumed an ability to adjust between 25% and 80% residue removal on-the-fly. Using this 

conceptual configuration, significantly more residue was available in each of the fields, and 

all areas in each field were managed sustainably. The sub-field scale integrated model also 

informed potential machine requirements for this variable removal rate configuration. In each 

of the three fields the variable rate removal equipment needs to adapt from 0% to over 50% 

removal rates in order to get 80% of the sustainably available residue.  

The general conclusions of this work are that large amounts of agricultural residues are 

sustainably available using commercially available equipment and current management 

practices. However, these systems are vulnerable to unsustainable removal practices due to 

sub-field scale variability in soil characteristics, surface slope, and grain yield. Furthermore, 

the conservation planning guidelines do not currently account for sub-field scale variability 

in these factors. Variable rate removal technologies have the potential to overcome these 

challenges as well as maximize residue removal while ensuring sustainability at the sub-field 

scale.  

6.2 FUTURE DIRECTIONS 

The future directions of this work fall into two categories. First is the continued 

development and extension of the environmental process modeling integration framework 

and associated computational methods. The second category is additional studies 

implementing the framework to investigate important questions that remain unanswered.  

6.2.1 Modeling Framework Extensions 

A primary extension required for the current integrated modeling framework is 

additional geoprocessing tools that are seamlessly coupled to the computational engine. This 

is important because additional spatial data continue to become available. This new data 
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better characterize the systems being investigated and create higher quality integrated model 

results. One example of this is supplementing SSURGO data with grid based soil sample data 

that many land managers are paying to attain. The capability to utilize these additional 

geospatial data sets also creates opportunities to investigate additional questions that are 

being asked by environmentalists and the bioenergy community. These include the impact of 

residue removal on water quality, green house gas emissions, and soil micronutrient levels. 

To support the examination of these questions, the framework also needs to be extended with 

additional model interfaces. The targeted models for integration interface development 

include Daycent, EPIC, and APEX. These models will support investigation of green house 

gas cycles, water quality, and quantitative soil carbon questions.  

Another requirement for making the existing integrated model more extensible is 

increasing the computational efficiency to facilitate the distributed use of the toolset for on-

the-fly control systems. As shown with the sub-field scale studies, it will be important to 

calculate removal rates on the harvesting equipment quickly as high fidelity precision 

agriculture data is being collected. There are several potential methods for developing and 

deploying this capability that need to be investigated and compared. 

6.2.2 Additional Studies with the Existing Framework 

Several studies utilizing the integrated modeling framework can be performed to 

examine remaining questions about sustainable agricultural residue removal, and more 

generally the optimal use of the productive landscape for bioenergy feedstock production. 

The first set of studies can be performed utilizing the integrated modeling framework with its 

current capability.  
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Another important consideration is the changes in the harvest index. As discussed in 

Chapter 2, there is evidence emerging that suggests advanced genetic modifications could be 

changing the ratio of grain to biomass in the residue producing crops. Although the exact 

relationship between increasing yields and changes in harvest index has not been established, 

a study investigating the large-scale impact of changes in the harvest index for residue-

producing crops will provide useful information for the bioenergy community. 

Variable rate residue removal was shown to sustainably harvest more residue than 

commercially available residue removal equipment configurations. A study investigating the 

larger geographic impact of variable rate residue removal could provide useful information 

for several participants in the bioenergy community including land managers, equipment 

manufacturers, and biorefiners. Another innovative management strategy that has received 

attention for potentially increasing sustainable residue removal potential is the use of cover 

crops.  

Cover crop systems can reduce soil erosion and support soil organic matter cycles, thus 

facilitating higher residue removal rates. Two studies investigating the impact of cover crops 

on sustainable residue removal potential would be useful. First, examining the impact of 

cover crop managements across a large geographic region (state or nation) could provide 

perspective on the importance of continued agronomic research developing cover crop 

management systems. Second, investigating the impact of cover crops while considering sub-

field scale variability could inform land managers considering residue removal.   

This work has focused on identifying sustainable agricultural residue removal potential, 

but has generally not considered the economic viability of the systems examined. The large 

geographic assessments and sub-field scale data provided by this work can provide 
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information for economic analyses of residue harvest and logistics operations for bioenergy 

systems. These economic analyses are critical for determining the ultimate viability of 

agricultural residue removal systems. 

6.2.3 Additional Studies with the Enhanced Framework 

Another set of additional studies that could provide useful information to the bioenergy 

research community will require the framework extensions mentioned above. Specifically of 

interest are the green house gas impacts of residue removal. The primary concern is that 

removing residue will require additional nitrogen application to replace the physiological 

nitrogen within the residue that would have broken down and become available in the soil. 

The additional nitrogen application could potentially result in higher N2O emissions from the 

soil surface to the atmosphere. A study that utilizes an ecosystem model such as Daycent to 

simulate the N2O emissions for residue removal operations could inform the extent of this 

potential problem and provide guidance on mitigating any issues that become apparent. 

Another concern that emerges when considering additional nitrogen application requirements 

is water quality. Current agricultural production systems are known to cause increased 

nitrogen loading in watersheds, particularly tile drained systems in the Corn Belt. Integration 

of the models mentioned above will facilitate studies that can simulate watershed nitrogen 

loading for a number of different management practices associated with residue removal.  

Each of these proposed studies considers part of a broad set of ecosystems services 

provided by the agricultural landscape. Bioenergy production systems, including agricultural 

residue removal, forest resources, dedicated herbaceous energy crops, and dedicated woody 

energy crops have the potential to enhance the ecosystem services provided by the 

agricultural landscape. The integration of sub-field scale geoprocessing tools with a broad set 
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of environmental process models as described through this work have the potential to support 

the agronomic and soil science communities in designing optimal landscape configurations 

which maximize feedstock production for bioenergy while enhancing the ecosystem services 

provided by the agricultural landscape. This is a bold and challenging objective which will 

require strong collaborations between large groups of researchers collecting data, developing 

models, and integrating the collective knowledge for enhanced decision making. The 

integration framework approach developed in this work has potential to help achieve this 

objective. 
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